
Simple and FlexibleDetection of Contiguous RepeatsUsing a Su�x Tree1Jens Stoye and Dan Gus�eldComputer Science DepartmentUniversity of California, Davis.CSE - 98 - 2April, 1998

1 Research partially supported by the German Academic Exchange Service(DAAD) and by grant DBI-9723346 from the National Science Foundation, andby grant DE-FG03-90ER60999 from The Department of Energy.



AbstractWe study the problem of detecting all occurrences of (primitive) tandem re-peats and tandem arrays in a string. We �rst give a simple time- and space-optimal algorithm to �nd all tandem repeats, and then modify it to becomea time and space-optimal algorithm for �nding only the primitive tandemrepeats. Both of these algorithms are then extended to handle tandem ar-rays. The contribution of this paper is both pedagogical and practical, givingsimple algorithms and implementations based on a su�x tree, using onlystandard tree traversal techniques.
1 IntroductionSu�x trees are a fundamental data structure supporting a wide variety of e�cientstring searching algorithms. Their \myriad virtues" are well known [1], and morethan 30 non-trivial applications have been collected [5, 8]. Although alternativealgorithms based on other data structures exist for many of these applications,it is remarkable that this single data structure allows so many e�cient { andoften surprisingly simple and elegant { solutions to so many string searching andmatching problems. In particular, su�x trees are well known to allow e�cient andsimple solutions to many problems concerning the identi�cation and location ofrepeated substrings, where the substrings are either not required to be contiguous,or where the substrings form the two halves of a palindrome (see [8] for a descriptionof several of such problems).Despite the enormous versatility of su�x trees and their natural applicationto problems concerning non-contiguous repeats and palindromes, problems con-cerning contiguous repeated substrings have not previously had simple, naturalsolutions based on su�x trees. This is both surprising and disappointing, makingit more di�cult to teach e�cient algorithms for a wide range of string problems,and complicating the long-term project (at U.C. Davis) of building practical, easilyunderstood software for many di�erent string tasks, based around a single residentdata structure, the su�x tree. Such tools are being developed for applications inbio-sequence analysis. The existing literature contains methods for locating certaincontiguous repeats [3, 11, 12, 10] that are not based on su�x trees, although themethod in [10] uses a su�x tree to solve certain subproblems. There are also twotechnically impressive papers, [9] and [2], which present time- and space-optimalmethods using su�x trees for problems concerning contiguous repeated substrings.The methods in both of those papers are quite complex (in algorithmic detail,needed auxiliary data structures, embellishments required for optimal space use,1



or time and correctness proofs). The �rst of those papers concerns problems notaddressed here, while the second paper does concern the same problems addressedhere. The second paper processes a su�x tree from the bottom up and requiresconsiderable auxiliary data structures.In this paper we present simple, time- and space-optimal algorithms for prob-lems of locating certain contiguous repeated substrings in a string S. Our methodsonly use standard tree traversal techniques, assuming the su�x tree for S is avail-able. Our methods process a single su�x tree top down with only the addition ofan array the size of the input string. These simple methods have both pedagogicaland practical value. The algorithms are based on the fact that su�x trees allowthe e�cient location of what we call branching occurrences of tandem repeats ina string. Once these occurrences are found, almost all other repetitive structuresof interest can be determined with little additional e�ort. Hence our various algo-rithms are not only simple, they are all derivatives of a single, basic algorithm.In Section 2 we introduce our terminology and state basic facts about therepeated substrings we will search for. In Section 3 we present the basic algorithmand three extensions. In Section 4 we sketch a bound on the number of occurrencesof primitive tandem arrays. Section 5 concludes with an open question.
2 Strings, Su�x Trees, and Tandem Arrays
2.1 Terminology and basic factsWe assume a �nite alphabet � of a �xed size. Throughout this paper, a, b, c, x,and y denote single characters from �; S, w, �, �, 
, � denote strings from ��.We �x attention to a string S of length n = jSj; for convenience, we assumeS ends with a character `$' not occurring elsewhere in S. For 1 � i � j � n,S[i::j] denotes the substring of S beginning with the ith and ending with the jthcharacter of S; we say there is an occurrence of S[i::j] at position i in S. Whenthe substring consists of only one letter we simply write S[i] rather than S[i::i].A string w is a tandem array if it can be written as w = �k for some k � 2;otherwise w is called primitive. An occurrence of a tandem array w = �k = S[i::i+kj�j � 1] is represented by a triple (i; �; k). Such an occurrence is called primitiveif � is primitive; it is called right-maximal if there is no additional occurrenceof � immediately after w in S; it is called left-maximal if there is no additionaloccurrence of � immediately preceding w in S. A tandem repeat (in the literaturealso called a square) is a tandem array w = �k with k = 2.An occurrence (i; �; 2) of a tandem repeat is branching if and only if the char-acter in S immediately to the right end of this occurrence, S[i+2j�j], di�ers from2



a a ww xi+ 2jawji+ jawjiFig. 1. Occurrences of branching and non-branching tandem repeats (i; aw; 2); when x = a, the occur-rence is non-branching, when x 6= a, the occurrence is branching
S[i+ j�j] (which must equal S[i], the �rst character of the repeat). Fig. 1 illustratesthis de�nition.String aw is called the left-rotation of string wa.Branching repeats and left-rotations are the keys to the algorithms presentedin this paper. A �rst indication of their importance is contained in the followingfact.
Lemma 1. Any non-branching occurrence (i; aw; 2) of a tandem repeat is the left-rotation of another tandem repeat, (i+1; wa; 2), starting one place to its right. Thetandem repeat (i+ 1; wa; 2) may or may not be branching.

By repeatedly applying Lemma 1, it follows that every tandem repeat is eitherbranching, or is contained in a chain of tandem repeats created by successive left-rotations starting from a branching tandem repeat. (Recall that string S endswith a termination symbol $). Furthermore, if (i + 1; wa; 2) is an occurrence of atandem repeat (branching or not), then we can test in constant time if there is atandem repeat of the same length starting at position i: simply test if S[i] = a.Hence, starting from a branching tandem repeat (i+1; wa; 2), the chain of tandemrepeats with (i+ 1; wa; 2) at its right end can be determined in time proportionalto the length of the chain (see Fig. 2).

i+ 1c b a x c b a x c b a y
Fig. 2. Chain of non-branching tandem repeats

The basic algorithm we will present in Section 3, �rst �nds branching repeats,and then generates any desired non-branching repeats from the branching repeats.To prepare for that algorithm, we need to connect su�x trees with tandem repeats.3



2.2 Su�x Trees and Tandem RepeatsWe assume that the reader is familiar with the basic de�nitions of a su�x tree.E�cient, linear time methods are known to construct a su�x tree, e.g. [17, 14, 16,7]. We denote by T (S) the su�x tree of S, i.e., the compacted trie of all the su�xesof S; L(v) denotes the path-label of node v in T (S), i.e., the concatenation of theedge labels along the path from the root to v. D(v) = jL(v)j is the string-depth ofv. Each leaf v of T (S) is labelled with index i if and only if L(v) = S[i::n]. At aninternal node v of T (S), we de�ne a leaf-list of v as a list of the leaf-labels in thesubtree below v. We denote this list by LL(v). Fig. 3 shows an example of a su�xtree with its leaf-lists.
[7,4,6,3]

s
s

s

s

12Mississippi$

i

$
i

p
p

8

s
s
i

$
i

p
p

$

[5,2]

i

i
p
p

$

[10,9]

i

$

10

p

i

$

9

p

$

i

p

i

p

$

s
s
i
p
p
i
$

[7,4]
i

s
s

i
p

p
i

$

3

$

p
p
i

[6,3]

[8,5,2,11]

1 11

5

2

7

4

6

Fig. 3. Su�x tree of string Mississippi with leaf-list LL(v) at each internal node
The following key fact about the relationship of tandem repeats and su�x treesfollows easily from the de�nitions, and can be found (explicitly or implicitly) in [3,2, 9, 8].Lemma 2. Consider two positions i and j of S, 1 � i < j � n, let l = j� i. Thenthe following assertions are equivalent:(a) There is an occurrence of a tandem repeat of length 2l starting at position i inS;(b) i and j occur in the same leaf-list of some node v in T (S) with depth D(v) � l.Lemma 2 is easily extended to characterize branching tandem repeats.Lemma 3. Consider two positions i and j of S, 1 � i < j � n, let l = j� i. Thenthe following assertions are equivalent: 4



(a) There is an occurrence of a branching tandem repeat of length 2l starting atposition i in S;(b) i and j occur in the same leaf-list of some node v in T (S) with depth D(v) = l,but do not appear in the same leaf-list of any node with depth greater than l.Equivalently, they do not appear together in the leaf-list of any single child ofv.
3 AlgorithmsWe will �nd all occurrences of branching tandem repeats in O(n log n) time, alloccurrences of tandem repeats in O(n log n + z) time, where z is the number ofoccurrences, and all occurrences of primitive tandem repeats in O(n log n) time.All methods require just O(n) space. With respect to worse case analysis, thesebounds are time- and space optimal. All occurrences of tandem arrays of repeats(primitive or not) will be found in linear space, and in time equal or less than thesebounds.The basic algorithm and its variations are based on dividing the occurrences oftandem repeats in S into the two disjoint sets, the branching and non-branchingoccurrences. The branching occurrences of tandem repeats are found �rst, andthen the non-branching occurrences are reported by successive left-rotations assuggested by Lemma 1.
3.1 The Basic AlgorithmGiven Lemma 3, all occurrences of branching tandem repeats can be found in thefollowing direct way:
Basic Algorithm. All nodes of T (S) begin unmarked. Step 1 is repeated untilall nodes are marked.1. Select an unmarked internal node v. Mark v and execute steps 2a and 2b fornode v.2a. Collect the leaf-list, LL(v), of v.2b. For each leaf i in LL(v), test whether leaf j = i+D(v) is in LL(v). If so, testwhether S[i] 6= S[i + 2D(v)]. There is a branching tandem repeat of length2D(v) starting at position i if and only if both tests return true. The �rst testdetermines if L(v)2 is a tandem repeat and the second test determines if it isbranching.The leaf-list of v is collected via any linear time traversal of the subtree rootedat v. Assuming (as is standard) a representation of the su�x tree that allows the5



algorithm to move from a node to a child in constant time, that traversal takestime proportional to the size of LL(v).Given a leaf i in that leaf-list, we can test in constant time if j = i+D(v) is alsoin LL(v), provided we have preprocessed the su�x tree in the following standardway: During a depth-�rst traversal of the su�x tree (starting at the root), assignsuccessive numbers (called dfs numbers) to the leaves in the order that they areencountered, and record these numbers in an array DFS, indexed by the originalleaf numbers.2 Additionally, when the depth-�rst traversal �rst visits an internalnode v, record at v the next dfs number which will be given to a leaf, and whenthe depth-�rst traversal backs up from v, record at v the most recent dfs numberassigned (see Fig. 4). It is well-known, and easy to establish, that all the leaves inLL(v) are assigned dfs numbers (inclusively) between the two dfs numbers recordedat v. Hence to determine if a leaf j = i+D(v) is in LL(v) just check if DFS[j] isbetween the two dfs numbers recorded at v.
(8,11)

s
s

s

s

12Mississippi$

i

$
i

p
p

2

s
s
i

$
i

p
p

(2,5)

$

(3,4)

i

i
p
p

$

(6,7)

i

$

6

p

i

$

7

p

$

i

p

i

p

$

s
s
i
p
p
i
$

(8,9)
i

s
s

i
p

p
i

$

11

$

p
p
i

(10,11)

51

3

4

8

9

10

Fig. 4. Su�x tree of string Mississippi with dfs numbers at internal nodes
The above basic algorithm �nds all occurrences of branching tandem repeatsin time proportional to the total size of all the leaf-lists. That total size is O(n2).However, a simple modi�cation leads to the desired time bound O(n log n).

3.2 Speeding Up the Basic AlgorithmFor each node v, let v0 denote the child of v whose leaf-list is largest over all thechildren of v. Let LL0(v) denote the leaf-list of v minus the leaf-list of v0, i.e.,2 As a side remark for those who know about su�x arrays [13], note that the array DFS is the inverseof the su�x array of S. 6



LL0(v) = LL(v) � LL(v0). By Lemma 3 (part b), if a branching tandem repeatstarting at position i is detected by the basic algorithm during an examinationof node v, then positions i and j = i + D(v) must be in the leaf-lists of twodistinct children of v. Hence if one of those positions is in the leaf-list of v0, theother position must be in LL0(v). Therefore, we need execute step 2b of the basicalgorithm only for each position in LL0(v), provided we look both forward fromthat position (as in the above basic algorithm) and backward from it (as we willdo below). These ideas are formalized in the following optimized basic algorithm.
Optimized Basic Algorithm. All nodes of T (S) begin unmarked. Step 1 isrepeated until all nodes are marked.1. Select an unmarked internal node v. Mark v and execute steps 2a and 2b and2c for node v.2a. Collect the list LL0(v) for v.2b. For each leaf i in LL0(v), test whether leaf j = i+D(v) is in LL(v), the leaf-listof v. If so, test whether S[i] 6= S[i+2D(v)]. There is a branching tandem repeatof length 2D(v) starting at that position i if and only if both tests return true.2c. For each leaf j in LL0(v), test whether leaf i = j � D(v) is in LL(v). If so,test whether S[i] 6= S[i+2D(v)]. There is a branching tandem repeat of length2D(v) starting at that position i if and only if both tests return true.

Clearly, LL0(v) can be found by a traversal from v that never visits v0, andthat traversal takes time proportional to the size of LL0(v). Moreover, from thedfs numbers at each node, the size of that node's leaf-list can be obtained (it issimply the di�erence of the dfs numbers plus one), so that the child of any node vwith the largest leaf-list can be easily identi�ed when needed. Hence the time forthe optimized algorithm is proportional to Pv LL0(v). It is a well-known fact thatthis sum is at most n log2 n. To see this, note that if a leaf i is in LL0(v) and isalso in LL0(u) for some ancestor u of v, then the size of LL0(v) is at most half thesize of LL0(u). Hence, leaf i can be counted in Pv LL0(v) at most log2 n times. Insummary,Theorem 4. All the branching tandem repeats are found in O(n log n) time andO(n) space by the optimized basic algorithm.There are additional obvious ways to improve the running time of the algo-rithm in practice (such as combining traversals from the internal nodes). But forsimplicity of exposition, and because these improvements don't reduce the worstcase running time, we omit a discussion of them.7



3.3 Finding All Occurrences of Tandem RepeatsFrom the set of branching occurrences of tandem repeats, the non-branching oc-currences are obtained by a simple enumeration procedure, based on Lemma 1. Indetail, the following is executed at each occurrence of a branching tandem repeatdiscovered by the optimized basic algorithm.Starting with an occurrence (i; wa; 2) of a branching tandem repeat, test ifS[i�1] = a. If they are equal, (i�1; aw; 2) is reported as a non-branching tandemrepeat. This process, called the rotation procedure, is continued to the left until aninequality is observed, at which point the procedure stops. It is obvious that theadditional time used by the rotation procedure is proportional to the total number,z, of occurrences of tandem repeats in S. Hence,Theorem 5. All occurrences of tandem repeats are found in O(n log n+ z) time.No additional space is needed since all comparisons can be done directly on thestring S.The same time and space bounds were also obtained for this problem, withoutthe use of su�x trees, in [11, 12, 10].
3.4 Primitive Tandem RepeatsA tandem repeat �� is called a primitive tandem repeat if string � is primitive,i.e., � cannot itself be expressed as the repeat of some substring. It is well knownthat there can be at most O(n log n) occurrences of primitive tandem repeats in astring of length n. We will sketch a proof of this in Section 4. Because the size ofthe output is smaller, and because any tandem repeat can be expressed as an arrayof primitive tandem repeats, it is often desirable to only report primitive tandemrepeats. Prior algorithms which �nd all occurrences of primitive tandem repeatsin O(n log n) time and linear space appear in [3] and [2].We extend the basic algorithm of the previous section to report only the prim-itive tandem repeats. We begin by stating a general property of primitive strings.Lemma 6. A string wa is primitive if and only if its left-rotation aw is primitive.Hence, if (i+1; wa; 2) is an occurrence of a primitive tandem repeat, and (i; aw; 2)is also an occurrence of a tandem repeat, then (i; aw; 2) is an occurrence of aprimitive tandem repeat.Proof. If aw is non-primitive then aw = �k for some � and k > 1. That meansthat each of the �rst j�j(k�1) characters in wa is equal to the character j�j placesto its right. In particular, character j�j + 1 in aw is a. Therefore, wa = �k where8



� consists of the last k � 1 characters of � followed by character a. Hence wa isnon-primitive.The converse, that when wa is non-primitive, then aw is also primitive, isproved in essentially the same way. utThe algorithmic importance of Lemma 6 is that when the (optimized) basic al-gorithm identi�es a branching tandem repeat associated with a node v, the tandemrepeats generated by the rotation procedure at node v will either all be primitive,or will all be non-primitive. So to exclude all and only the non-primitive tandemrepeats, it su�ces to exclude every branching tandem repeat which is not prim-itive. Since branching tandem repeats are identi�ed only at nodes, it su�ces toidentify every node u whose path-label L(u) = �k for some k � 2, where � isprimitive. Clearly, such a string � will be the path-label of some ancestor node vof u. Moreover, the basic algorithm will identify the primitive branching tandemrepeat L(v)2 = �2 at node v. We will show next that, at that point in its execu-tion, the basic algorithm can be extended to e�ciently locate and mark all nodesbelow node v whose path-labels are L(v)k = �k for k � 2. That extension will alsoidentify some other nodes that may be marked for exclusion.To exclude all non-primitive tandem repeats (but no primitive tandem repeats)we �rst modify the (optimized) basic algorithm to process the nodes in a top-down order, so that no node is selected in step 1 until all of its ancestors have beenselected. This ensures that a node with path-label � will be selected before a nodewith path-label �k for k � 2.Second, we combine the rotation procedure with the (optimized) basic algo-rithm, so that when a branching primitive repeat L(v)2 = �2 is found at a nodev, the algorithm next executes a rotation procedure from each branching occur-rence of �2. Each such execution rotates left through each character in a chain ofconsecutive �'s. As a side-e�ect of this computation, the algorithm can determine(in essentially no extra time) the largest value of k (call it kv) such that �k is asubstring of S. Once kv is determined, the algorithm walks from v to the end ofthe path labeled �kv in the su�x tree. That path exists (and will extend from v)since �kv is a substring in S. Moreover, since the path labeled � ends at a node(v), each string �k, for k < kv, will also end at a node. During the walk, the al-gorithm marks each node whose path-label is �k, meaning that that node will notbe selected in step 1 of the basic algorithm. (Recognizing that the node has thatlabel is a trivial exercise.) This is a correct action because the path to any suchmarked node is either too long to be half of any tandem repeat, or it is the �rsthalf of a tandem repeat that is not primitive. Note that the number of steps inthe walk from v is bounded by the number of left-rotations done in the rotationprocedure that discovers kv. 9



Clearly, any node corresponding to branching non-primitive tandem repeat willbecome marked in such a way, and hence never selected in step 1. Therefore thealgorithm, as modi�ed above, will enumerate all and only occurrences of primitivetandem repeats. The number of steps in all the extra walks is bounded by thenumber of left-rotations, and each left-rotation identi�es a distinct occurrence ofa primitive tandem repeat. Hence, the time for the algorithm is O(n log n + z),where z is the number of occurrences of primitive tandem repeats. However, it isknown that z is O(n log n) in any string of length n. Hence,
Theorem 7. The method described above �nds all occurrences of primitive tandemrepeats in O(n log n) time and O(n) space.

The time for the extra walks can be further reduced by using the skip/counttrick that is well-known from su�x tree construction methods. That reduces thenumber of steps for a walk from the number of characters on the walk to thenumber of nodes on the walk, but, in this application, does not improve the worstcase running time.
3.5 Primitive Tandem ArraysFinally we extend the algorithm to locate all right-maximal occurrences of primitivetandem arrays. The idea is, for each branching primitive tandem repeat (i; �; 2)observed at a node v with L(v) = �, successively test for k = 1; 2; : : : if leafi � kj�j is also in the subtree below v. (Here it is not necessary to test explicitlyif the tandem array is branching: From the fact that tandem repeat (i; �; 2) isbranching, it follows immediately that all tandem arrays we �nd this way arealso branching.) Each successful test corresponds to a branching tandem array(i� kj�j; �; k + 2). Once the test fails, the procedure stops.To also �nd the non-branching occurrences, the rotation procedure is appliedto each of the branching occurrences (i � kj�j; �; k + 2). If we stop the rotationsafter j�j�1 steps, all and only the right-maximal occurrences of primitive tandemarrays will be obtained; otherwise all occurrences of primitive tandem arrays areobtained, and there may be as many as n(n � 1)=2 of these. Hence in the lattercase the procedure runs in time O(n log n+ z) where z is the output size.The procedure can also easily be extended to �nd only those primitive tandemarrays which are simultaneously left- and right-maximal if for each of the chainsof right-maximal primitive tandem repeats, only the last one (when the rotationprocedure stops) is reported. This procedure takes time O(n log n) as well.10



4 The Number of Occurrences of Primitive TandemRepeatsIn this section we sketch a proof that there can be at most O(n log n) occurrences ofprimitive tandem repeats in a string of length n. This fact is well established [3, 4, 6](in fact, it is known [15] that the number of occurrences of primitive tandem repeatsis bounded by 1:45(n+1) log2 n�3:3n+5:87). We present here the O(n log n) boundto make the paper self-contained, and because the proof given here is simpler thanpreviously published proofs.We say two positions i and j in the leaf-list LL(v) of some node v, are adjacentin LL(v) if there is no position strictly between i and j that is also in LL(v). Thekey fact we need is the following:Lemma 8. Assume i < j = i + l, and that there is an occurrence of a primitivetandem repeat of length 2l starting at position i in S. Then (a) i and j both occurin the leaf-list LL(v) of some node v in T (S) with depth D(v) � l, and (b) i andj are adjacent in LL(v).Condition (a) simply repeats the necessary condition from Lemma 2 for anoccurrence of a tandem repeat of length 2l starting at position i. Condition (b)distinguishes a primitive from a non-primitive tandem repeat. The key to provingthis lemma is to show that if condition (a) is satis�ed, and yet i and j are notadjacent in LL(v), then the tandem repeat of length 2l starting at i is not primitive.Proof (of Lemma 8). Let �� be a tandem repeat of length 2l beginning at positioni, and let j = i + l. Assume condition (a) is satis�ed but (b) is not. That meansthere is another position k in LL(v) strictly between i and j. So a copy of � occursstarting at position k < i+ l. That copy of � can be expressed as a su�x, �, of �(from the copy starting at i) followed by a pre�x, 
, of � (from the copy startingat j). It follows that � = �
 = 
�, and by a well-known fact (Lemma 3.2.1 in[8]), � can be expressed as �q for some substring �, and q > 1. Therefore, � is notprimitive. utA pair (i; j) is said to be an adjacent pair if there is some node v such that iand j are adjacent in LL(v).By Lemma 8, each occurrence of a primitive tandem repeat is associated withsome adjacent pair. But each adjacent pair (i; j) is associated with at most oneoccurrence of a primitive tandem repeat, because that repeat is of length 2(j � i)and starts at i. Hence we can bound the number of occurrences of primitive tandemrepeats in S by the total number of distinct adjacent pairs in all the leaf-lists ofT (S). For any node u, let N(u) be the number of adjacent pairs that are in the11



leaf-list of u but not in the leaf-list of the parent of u. De�ne N(r) = n� 1, for theroot r of T (S). Any adjacent pair is adjacent in the leaf-lists of nodes that form adescending path in T (S) (maybe only a single node in length), so the total numberof distinct adjacent pairs is PuN(u).Consider an internal node v0 and its parent node v. Assume positions i and jare adjacent in LL(v0) but are not adjacent in LL(v) (see Fig. 5). That means thatin LL(v) there is some position k strictly between i and j, and that k is not inLL(v0). So k must be contained in the leaf-list of some other child w of v. Sincefor each such pair (i; j) in LL(v0) there is a di�erent such \witness" k, the valueof N(v0) can not be larger than the number of entries in the lists LL(w) summedover all children w of v other than v0, so N(v0) � Pw jLL(w)j = jLL(v)j�jLL(v0)j.
v

v0w [:::; i; j; :::][:::; k; :::]
[:::; i; k; j; :::]

Fig. 5. Szenario where (i; j) is an adjacent pair in LL(v0) but not in LL(v)
Now for any internal node v, de�ne (as in Section 3.2) v0 to be the child of v withthe largest leaf-list. It follows that PuN(u), and the total number of occurrencesof tandem repeats, is bounded by (n � 1) + Pv jLL(v)j � jLL(v0)j. That sum isbounded by O(n log n) following the discussion in Section 3.2.

5 Summary and an Open QuestionThe time and space bounds for the methods presented here have been obtainedearlier. Therefore, the contribution of this paper is the simplicity of the algorithms,which use only standard traversals of a su�x tree. The success of this e�ort musttherefore be gauged by comparing the methods in this paper with earlier meth-ods (particularly those in [2]) that use su�x trees to �nd contiguous repeatedsubstrings.We leave it as an open question whether the use of branching tandem repeatsalso allows linear-time solutions for related problems which are solvable within12



that time bound (e.g. the problem of �nding the shortest tandem repeat beginningat each position of a string, cf. [9]). A positive indication is that the numberof occurrences of branching tandem repeats in a string of length n seems to bebounded by n: we have experimentally veri�ed this conjecture for all binary stringsup to length 30 and for all ternary strings up to length 20.
References1. A. Apostolico. The myriad virtues of subword trees. In A. Apostolico andZ. Galil, editors, Combinatorial Algorithms on Words, volume F12 of NATOASI Series, pages 85{96. Springer Verlag, 1985.2. A. Apostolico and F. P. Preparata. Optimal o�-line detection of repetitions ina string. Theor. Comput. Sci., 22:297{315, 1983.3. M. Crochemore. An optimal algorithm for computing the repetitions in a word.Inform. Process. Lett., 12(5):244{250, 1981.4. M. Crochemore and W. Rytter. Periodic pre�xes in texts. In R. Capodelli,A. De Santis, and U. Vaccaro, editors, Sequences II, pages 153{165. SpringerVerlag, 1993.5. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press,1994.6. M. Crochemore and W. Rytter. Squares, cubes, and time-space e�cient stringsearching. Algorithmica, 13(5):405{425, 1995.7. M. Farach. Optimal su�x tree construction with large alphabets. In Proc. 38thAnnu. Symp. Found. Comput. Sci., FOCS 97, 1997. IEEE Press.8. D. Gus�eld. Algorithms on Strings, Trees, and Sequences: Computer Scienceand Computational Biology. Cambridge University Press, New York, NY, 1997.9. S. R. Kosaraju. Computation of squares in a string. In M. Crochemore andD. Gus�eld, editors, Combinatorial Pattern Matching: 5th Annual Symposium,CPM 94. Proceedings, number 807 in Lecture Notes in Computer Science, pages146{150, 1994. Springer Verlag.10. G. M. Landau and J. P. Schmidt. An algorithm for approximate tandem re-peats. In A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, editors,Combinatorial Pattern Matching: 4th Annual Symposium, CPM 93. Proceed-ings, number 684 in Lecture Notes in Computer Science, pages 120{133, 1993.Springer Verlag.11. M. G. Main and R. J. Lorentz. An O(n log n) algorithm for �nding all repeti-tions in a string. J. Algor., 5:422{432, 1984.12. M. G. Main and R. J. Lorentz. Linear time recognition of squarefree strings.In A. Apostolico and Z. Galil, editors, Combinatorial Algorithms on Words,volume F12 of NATO ASI Series, pages 271{278. Springer Verlag, Berlin, 1985.13



13. U. Manber and E. W. Myers. Su�x arrays: A new method for on-line search.SIAM J. Computing, 22:935{948, 1993.14. E. M. McCreight. A space-economical su�x tree construction algorithm. Jour-nal of the ACM, 23(2):262{272, 1976.15. P. F. Stelling. Applications of Combinatorial Analysis to Repetitions in Strings,Phylogeny, and Parallel Multiplier Design. Ph.d. dissertation, Department ofComputer Science, University of California, Davis, 1995.16. E. Ukkonen. On-line construction of su�x trees. Algorithmica, 14:249{260,1995.17. P. Weiner. Linear pattern matching algorithms. In IEEE 14th Annual Sym-posium on Switching and Automata Theory, pages 1{11. IEEE Press, 1973.

14


