Source code for glvq.gmlvq

# -*- coding: utf-8 -*-

# Author: Joris Jensen <jjensen@techfak.uni-bielefeld.de>
#
# License: BSD 3 clause

from __future__ import division

import math
from math import log

import numpy as np
from scipy.optimize import minimize

from .glvq import GlvqModel, _squared_euclidean
from sklearn.utils import validation


[docs]class GmlvqModel(GlvqModel): """Generalized Matrix Learning Vector Quantization Parameters ---------- prototypes_per_class : int or list of int, optional (default=1) Number of prototypes per class. Use list to specify different numbers per class. initial_prototypes : array-like, shape = [n_prototypes, n_features + 1], optional Prototypes to start with. If not given initialization near the class means. Class label must be placed as last entry of each prototype initial_matrix : array-like, shape = [dim, n_features], optional Relevance matrix to start with. If not given random initialization for rectangular matrix and unity for squared matrix. regularization : float, optional (default=0.0) Value between 0 and 1. Regularization is done by the log determinant of the relevance matrix. Without regularization relevances may degenerate to zero. dim : int, optional (default=nb_features) Maximum rank or projection dimensions max_iter : int, optional (default=2500) The maximum number of iterations. gtol : float, optional (default=1e-5) Gradient norm must be less than gtol before successful termination of l-bfgs-b. display : boolean, optional (default=False) Print information about the bfgs steps. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- w_ : array-like, shape = [n_prototypes, n_features] Prototype vector, where n_prototypes in the number of prototypes and n_features is the number of features c_w_ : array-like, shape = [n_prototypes] Prototype classes classes_ : array-like, shape = [n_classes] Array containing labels. dim_ : int Maximum rank or projection dimensions omega_ : array-like, shape = [dim, n_features] Relevance matrix See also -------- GlvqModel, GrlvqModel, LgmlvqModel """
[docs] def __init__(self, prototypes_per_class=1, initial_prototypes=None, initial_matrix=None, regularization=0.0, dim=None, max_iter=2500, gtol=1e-5, display=False, random_state=None): super(GmlvqModel, self).__init__(prototypes_per_class, initial_prototypes, max_iter, gtol, display, random_state) self.regularization = regularization self.initial_matrix = initial_matrix
self.initialdim = dim def _optgrad(self, variables, training_data, label_equals_prototype, random_state, lr_relevances=0, lr_prototypes=1): n_data, n_dim = training_data.shape variables = variables.reshape(variables.size // n_dim, n_dim) nb_prototypes = self.c_w_.shape[0] omega_t = variables[nb_prototypes:].conj().T dist = _squared_euclidean(training_data.dot(omega_t), variables[:nb_prototypes].dot(omega_t)) d_wrong = dist.copy() d_wrong[label_equals_prototype] = np.inf distwrong = d_wrong.min(1) pidxwrong = d_wrong.argmin(1) d_correct = dist d_correct[np.invert(label_equals_prototype)] = np.inf distcorrect = d_correct.min(1) pidxcorrect = d_correct.argmin(1) distcorrectpluswrong = distcorrect + distwrong g = np.zeros(variables.shape) distcorrectpluswrong = 4 / distcorrectpluswrong ** 2 if lr_relevances > 0: gw = np.zeros([omega_t.shape[0], n_dim]) for i in range(nb_prototypes): idxc = i == pidxcorrect idxw = i == pidxwrong dcd = distcorrect[idxw] * distcorrectpluswrong[idxw] dwd = distwrong[idxc] * distcorrectpluswrong[idxc] if lr_relevances > 0: difc = training_data[idxc] - variables[i] difw = training_data[idxw] - variables[i] gw = gw - np.dot(difw * dcd[np.newaxis].T, omega_t).T \ .dot(difw) + np.dot(difc * dwd[np.newaxis].T, omega_t).T.dot(difc) if lr_prototypes > 0: g[i] = dcd.dot(difw) - dwd.dot(difc) elif lr_prototypes > 0: g[i] = dcd.dot(training_data[idxw]) - \ dwd.dot(training_data[idxc]) + \ (dwd.sum(0) - dcd.sum(0)) * variables[i] f3 = 0 if self.regularization: f3 = np.linalg.pinv(omega_t.conj().T).conj().T if lr_relevances > 0: g[nb_prototypes:] = 2 / n_data \ * lr_relevances * gw - self.regularization * f3 if lr_prototypes > 0: g[:nb_prototypes] = 1 / n_data * lr_prototypes \ * g[:nb_prototypes].dot(omega_t.dot(omega_t.T)) g = g * (1 + 0.0001 * random_state.rand(*g.shape) - 0.5) return g.ravel() def _optfun(self, variables, training_data, label_equals_prototype): n_data, n_dim = training_data.shape variables = variables.reshape(variables.size // n_dim, n_dim) nb_prototypes = self.c_w_.shape[0] omega_t = variables[nb_prototypes:] # .conj().T dist = _squared_euclidean(training_data.dot(omega_t), variables[:nb_prototypes].dot(omega_t)) d_wrong = dist.copy() d_wrong[label_equals_prototype] = np.inf distwrong = d_wrong.min(1) d_correct = dist d_correct[np.invert(label_equals_prototype)] = np.inf distcorrect = d_correct.min(1) distcorrectpluswrong = distcorrect + distwrong distcorectminuswrong = distcorrect - distwrong mu = distcorectminuswrong / distcorrectpluswrong if self.regularization > 0: reg_term = self.regularization * log( np.linalg.det(omega_t.conj().T.dot(omega_t))) return mu.sum(0) - reg_term # f return mu.sum(0) def _optimize(self, x, y, random_state): if not isinstance(self.regularization, float) or self.regularization < 0: raise ValueError("regularization must be a positive float ") nb_prototypes, nb_features = self.w_.shape if self.initialdim is None: self.dim_ = nb_features elif not isinstance(self.initialdim, int) or self.initialdim <= 0: raise ValueError("dim must be an positive int") else: self.dim_ = self.initialdim if self.initial_matrix is None: if self.dim_ == nb_features: self.omega_ = np.eye(nb_features) else: self.omega_ = random_state.rand(self.dim_, nb_features) * 2 - 1 else: self.omega_ = validation.check_array(self.initial_matrix) if self.omega_.shape[1] != nb_features: # TODO: check dim raise ValueError( "initial matrix has wrong number of features\n" "found=%d\n" "expected=%d" % (self.omega_.shape[1], nb_features)) variables = np.append(self.w_, self.omega_, axis=0) label_equals_prototype = y[np.newaxis].T == self.c_w_ method = 'l-bfgs-b' res = minimize( fun=lambda vs: self._optfun(vs, x, label_equals_prototype=label_equals_prototype), jac=lambda vs: self._optgrad(vs, x, label_equals_prototype=label_equals_prototype, random_state=random_state, lr_prototypes=1, lr_relevances=0), method=method, x0=variables, options={'disp': self.display, 'gtol': self.gtol, 'maxiter': self.max_iter}) n_iter = res.nit res = minimize( fun=lambda vs: self._optfun(vs, x, label_equals_prototype=label_equals_prototype), jac=lambda vs: self._optgrad(vs, x, label_equals_prototype=label_equals_prototype, random_state=random_state, lr_prototypes=0, lr_relevances=1), method=method, x0=res.x, options={'disp': self.display, 'gtol': self.gtol, 'maxiter': self.max_iter}) n_iter = max(n_iter, res.nit) res = minimize( fun=lambda vs: self._optfun(vs, x, label_equals_prototype=label_equals_prototype), jac=lambda vs: self._optgrad(vs, x, label_equals_prototype=label_equals_prototype, random_state=random_state, lr_prototypes=1, lr_relevances=1), method=method, x0=res.x, options={'disp': self.display, 'gtol': self.gtol, 'maxiter': self.max_iter}) n_iter = max(n_iter, res.nit) out = res.x.reshape(res.x.size // nb_features, nb_features) self.w_ = out[:nb_prototypes] self.omega_ = out[nb_prototypes:] self.omega_ /= math.sqrt( np.sum(np.diag(self.omega_.T.dot(self.omega_)))) self.n_iter_ = n_iter def _compute_distance(self, x, w=None, omega=None): if w is None: w = self.w_ if omega is None: omega = self.omega_ nb_samples = x.shape[0] nb_prototypes = w.shape[0] distance = np.zeros([nb_prototypes, nb_samples]) for i in range(nb_prototypes): distance[i] = np.sum((x - w[i]).dot(omega.T) ** 2, 1) return distance.T
[docs] def project(self, x, dims, print_variance_covered=False): """Projects the data input data X using the relevance matrix of trained model to dimension dim Parameters ---------- x : array-like, shape = [n,n_features] input data for project dims : int dimension to project to print_variance_covered : boolean flag to print the covered variance of the projection Returns -------- C : array, shape = [n,n_features] Returns predicted values. """ v, u = np.linalg.eig(self.omega_.conj().T.dot(self.omega_)) idx = v.argsort()[::-1] if print_variance_covered: print('variance coverd by projection:', v[idx][:dims].sum() / v.sum() * 100)
return x.dot(u[:, idx][:, :dims].dot(np.diag(np.sqrt(v[idx][:dims]))))