This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

http://dx.doi.org/10.1109/TIV.2019.2955910

A Survey of Personalization for
Advanced Driver Assistance Systems

Martina Hasenjiger, Martin Heckmann, and Heiko Wersing

Abstract—The field of advanced driver assistance systems
(ADAS) has matured towards more and more complex assistance
functions, applied with wider scope and a strongly increasing
user base due to wider market penetration. To deal with such
a large variety of usage conditions and patterns, personalization
methods have been developed to ensure optimal user experience.
In this paper we review current approaches in the literature
that demonstrate an adaptation to the drivers’ preferences,
driving styles, skills and driving patterns. We discuss the general
assumptions on which personalization in the automotive context
is based, the general design of personalized ADAS, the current
approaches with their practical realization and point out open
issues in the design and implementation of a personalized
driving experience. Based on this analysis we propose a general
conceptual framework to personalization in ADAS. It suggests a
modular decomposition for the next generation of personalized
ADAS and HMI which can be expected to continuously adapt in
interaction with the driver.

I. INTRODUCTION

ERSONALIZATION in the sense of “to make something

suitable for the needs and preferences of a particular
person” has gained considerable interest from various dis-
ciplines over the last 20 years [1], [2]. In the automotive
area personalization is still a relatively recent trend that is
gaining momentum. This is not only reflected by the increasing
number of academic publications in this area but also car
makers have realized the potential of personalization and
announced concepts for personalized vehicles, e.g., [3]-[5].

While the general concept of personalization is intuitive,
the understanding and goals of personalization differ between
various disciplines and researchers [6], [7]. Here we will focus
on personalization from the perspective of human-machine
interaction and view it as a means to make technologies both
more acceptable and useful for people.

In the automotive area, advanced driver assistance systems
(ADAS) are a very important application area for personal-
ization. ADAS have matured over the last years and have
become available to a larger group of customers. Their aims
are to prevent accidents caused by human error, to inform
and warn the driver on possible dangerous situations and to
generally improve the driving experience and make driving
safer, more relaxed and joyful. While these are laudable aims,
drivers will only use ADAS if they experience them as useful.
This, in turn, will be the case if the ADAS are intuitive in
usage and understanding, if they do not annoy the driver
with irrelevant or untimely recommendations and precautions,
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Table 1
PROS AND CONS OF EXPLICIT AND IMPLICIT PERSONALIZATION.

Mode Advantage Disadvantage

explicit  feeling of control requires attention & effort
complexity & scope limits

implicit  no cognitive load mismatch with user expec-

tation
complex adaptations possi-
ble

opaqueness

and, in cases where the ADAS takes over part of the vehicle
control, if its driving style matches the driver’s expectations.
However, drivers differ in their preferences, skills, and needs
and, even worse, their preferences may change depending on
their state and the driving situation. Hence the rationale for
personalization in ADAS is to improve the driving experience
and the performance of the assisted drivers by adapting the
assistance system to their preferences and needs.

Personalization can be achieved in two ways (see Table I),
either explicitly [6] by offering drivers to choose their favored
selection from among a number of predefined system settings
or implicitly [6] by estimating the drivers’ preferences based
on observing their behavior. The explicit possibility leaves
the drivers in direct control but limits the possible options
to a small number of standard system settings and to system
parameters they can understand intuitively. The drivers also
need to allocate attention and effort to this task which may be
prohibitively distracting during normal driving. The implicit
mode offers the chance of a more fine tuned individual and
complex adaptation of the system at the risk that the driver
may not always have a clear understanding of the behavior
and configuration of the assistance system. This review will
mainly focus on approaches to personalization in ADAS that
fall into the second category of implicit personalization and
learn a driver model from the observation of driver behavior.

Driver modeling has been the subject of intense research
in the past years, cf. [8] and [9] for recent surveys of
the topic. Driver models have been used to predict driving
maneuvers, driver intent, and driver state, among other things,
usually with the goal to ultimately incorporate them into some
driver assistance system. In this review, we are not so much
interested in driver models as such but rather aim at approaches
that integrate these models with vehicle control to achieve
personalized driver assistance systems.

We will see that basically all ADAS lend themselves to
personalization and that all parameters that determine the
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Figure 1. Time line of personalization in the automobile sector. The papers
of this review are grouped by application area as discussed below. Our focus
is on personalized ADAS, i.e. forward collision warning (FCW) and brake as-
sistance, adaptive cruise control (ACC), lane keeping, and lane change. Other
areas related to personalization in the automotive sector are infotainment,
electric vehicles, cooperative assistance, and autonomous vehicles.

system behavior may be personalized: from preferred warn-
ing thresholds, frequency and timing in warning systems to
features describing driving characteristics in systems that take
over or support longitudinal and lateral control. Currently
most existing prototypes focus on the personalization of a
single ADAS, but with a growing number of ADAS becoming
available in consumer vehicles, it will become necessary to
develop a more comprehensive concept of personalization that
takes into account how information on personalization can
be shared between various ADAS components. In the closing
sections we extend our previous review of this field [10] and
propose a modular approach to the design of interactive, per-
sonalizable systems that clearly distinguishes between ADAS,
personalization module, and human machine interface (HMI).

The paper is organized as follows: In the next, Sec. II,
we outline the application areas of personalization in the
automobile sector. In Sec. III, we discuss personalization in
advanced driver assistance systems. We will start by lining
out the general personalization process that is used in most
approaches today. In the following we will review the state of
the art in concrete approaches to the personalization of ADAS
(Sec. IV) and of driving style in autonomous vehicles (Sec. V)
against this background. Since the field is relatively young,
there are a number of questions that have not been considered
yet. Sec. VI briefly discusses these open issues. In Sec. VII we
propose a general, unifying concept for a modular approach
towards personalized ADAS that allows for a more general
use of personal information for different ADAS functions.
Sec. VIII concludes the paper.

II. PERSONALIZATION IN THE AUTOMOBILE SECTOR

Personalization in the automobile sector that goes beyond
the customization of color and accessories, a memory func-
tion for the driver’s seat, side mirror, and steering column
positions, is still a relatively recent trend with an increasing
number of publications in the recent years. Fig. 1 illustrates
the development in this area. Apart from some early work
on the adaptation of warning thresholds, the first target of
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personalization was in-vehicle infotainment, with the main
focus on navigation systems. Next, work on the personal-
ization of advanced driver assistance systems started, where
personalization is following the development in this field: the
first approaches dealt with the adaptation of assistance systems
for longitudinal control, i.e., adaptive cruise control. More
recently lateral control, i.e., lane departure warning and lane
keeping assistance, has been included and first steps towards
personalized lane change assistance have been made. Due
to the experience with partially automated control in these
systems, there is a growing awareness of the importance of
driving style for user acceptance in the emerging field of
autonomous driving. This is reflected in approaches that aim
to learn their driving style directly from the observations of,
and in interaction with, the driver. A third application area of
personalization in the automobile sector are electric vehicles
(EV). Here the main target is the mitigation of range anxiety
by an accurate prediction of the driving range that strongly
depends on the driving style. In the following, we will review
these application areas of personalization with a focus on
advanced driver assistance systems.

A. Infotainment

The main target of personalization in vehicles has been
the infotainment area. Based on the work by Langley [11],
[12] on adaptive user interfaces, an early example is a driving
route recommendation system [13], [14] that generates routes
with the help of the driver, builds a model of the driver’s
preferences and refines this model through interaction with
the driver. Along the same lines, but more recently, Letchner
et al. [15] propose a route planner that incorporates traits of
a recommender system to achieve personalization. They use
a database of GPS traces to learn time-variant traffic speeds
and include a driver’s past GPS logs to propose routes that
are suited to the driver’s individual driving preferences. These
ideas are taken a step further by Rodriguez Garzon [16] who
proposes to include situation awareness into personalization:
here the interactive user interface observes the user’s situation-
dependent interaction behavior and changes according to their
situation-dependent preferences. The approach aims at real-
time predictions of attainability of all destinations in a map
and continuously adapts to user preferences using inverse
reinforcement learning.

Another example of a personalized situation aware in-
vehicle infotainment system is presented by Arnason et al.
[17]. This system proactively recommends personalized audio
content and uses car sensors to determine when to present this
information in order to minimize distraction from the driving
task. In [18] a personalized prediction system is introduced
that makes adaptive suggestions to limit the necessary selec-
tion effort for standard infotainment operations.

B. Driver Assistance Systems

The personalization of advanced driver assistance systems
(ADAS) is a more recent development than the personalization
of infotainment systems. This may be due to the fact that the
underlying technology only recently reached a sufficient level
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of maturity and availability to afford personalization. Addition-
ally, safety and usability issues play a much more important
role in ADAS if the system assumes control of the vehicle.
We will give a more detailed discussion of personalization in
ADAS with a focus on adaptive cruise control in Sec. IV.

C. Electric Vehicles

A different, and increasingly important, application area of
personalization in the automotive context are electric vehicles
(EVs). EV operation and driving range depend crucially on
the actual driving behavior, i.e., speed and acceleration, and
the road profile. Hence the prediction accuracy of the driving
range can be expected to benefit from personalization. Li et
al. [19] present a personalized driving behavior monitoring and
analysis system for hybrid electric vehicles (HEV). Ondriiska
and Posner [20] predict the attainable range of HEVs based
on the drivers generalized route preferences. Their approach
significantly reduces the relative error in energy prediction as
compared to driver-agnostic heuristics such as shortest-path
or shortest-time routes. Tseng et al. [21] present approaches
for personalized vehicle energy consumption prediction us-
ing participatory sensing data that are empirically shown to
improve prediction accuracy. In the area of mobile devices
applications, Ferreira et al. [22] propose an an EV assistant
application that is based on tracking the driver’s behavior,
and thus creating a driver profile, from trip information, EV
characteristics and driving style. This driver profile is then
used for range prediction. Jiménez [23] use smart-phone sensor
data to build real-time energy consumption models for EVs.
Model accuracy can be improved significantly by including a
classification of the driving style.

III. APPROACHES TO PERSONALIZATION

In this section we will first outline the steps of the most
common current personalization approaches in the automotive
field. After that we will briefly highlight the role of driver
models.

A. Personalization Process

Current personalization approaches in the automotive field
mainly target the technical implementation of a personalized
functionality. Typically, they are data driven approaches, i.e.,
a model of the driver is learned from driving data. This model
is then used as a surrogate for the driver, cf. Fig. 2 for a
conceptual view on personalized ADAS.

The main steps in the personalization process are:

1) Observe the driving behavior.
The basic, albeit tacit, assumption in personalization is
that drivers are most comfortable with a driving style
that is similar to their own driving style. Consequently,
driving data are collected in a field study from a group
of drivers using an instrumented vehicle.

2) Build a model of human driving behavior.
A driver model is learned from the data of an individual
driver and directly used as part of the controller. Often
the controller is divided into two parts: a high level
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Figure 2. Personalized ADAS with pre-trained driver model. The driver model
is trained on previously recorded data and then seen as a surrogate for the
driver. In this context personalization of an ADAS function is implemented via
an adaptation of the parameters of the driver model to the individual driving
behavior observed from the driver.

controller, that models the driving behavior and whose
parameters are adapted to the specific driver during
personalization, and a low level controller, that is
responsible for the actuation of the vehicle according
to the input from the high level controller.

3) Validate the model.

Finally the resulting personalized system is validated

and compared to a standard system to show that it

actually adapts to different driving styles. Depending on

the maturity of the approach this is done in 3 steps:

a) Off-line playback.

Here recorded driving data are fed into the
personalized controller to verify that the controller
correctly reproduces the observed driving behavior.

b) Simulation in a traffic simulator.
The personalized controller is evaluated by drivers
in controlled traffic situations and often compared
with a standard controller.

¢) Field test.
Finally the personalized controller is implemented
in a vehicle and tested in real traffic.
We denote approaches that follow this sequence of steps as
personalization with a pre-trained driver model (compare

Fig. 2).

B. Driver Models

Driver models play a central role in personalized ADAS.
They represent the driver and process information on the
driving situation into actions of the vehicle’s actuators. In
ADAS they are used to mimic or to predict the drivers’ intent
and behavior to assist in a relevant manner. Currently most
driver models represent the average driver, their parameters
are fixed and they cannot adapt to different drivers. As human
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behavior is non-deterministic by nature and characterized by a
high degree of inter- and intra-driver variability, the accurate
modeling of driver behavior is a challenging task that has
been studied in various disciplines. A recent review on driver
models for ADAS from the control point of view is given by
Wang et al. [8]. Lin et al. [9] review and discuss methods for
modeling driver behavior characteristics.

IV. PERSONALIZED ADAS

The potential of personalization or adaptation to the driver
in driver assistance systems has been realized early [24]
but has become feasible only recently due to progress in
sensory systems and increasing computational power on board
of modern vehicles. Below we discuss approaches to the
personalization of current driver assistance systems.

A. ACC

Adaptive cruise control (ACC) is a driving comfort system
for the longitudinal control of the vehicle: it maintains a steady
speed as set by the driver while keeping a desired time gap to
the leading vehicle. The driver is free to choose a set speed but
can only choose between a number of pre-defined time gaps
which they adjust manually. ACC is generally perceived as
a useful and comfortable system [25]-[27]. It is known since
the introduction of ACC that drivers appreciate the freedom to
choose different time gaps [24] according to their preferences.

In the personalization of ACC we can distinguish between
group-based and individual-based approaches to personaliza-
tion. In the former case drivers are assigned to one of a small
number of representative driving styles for which an ACC
control strategy is implemented. In the latter case, the ACC
control strategy tries to best reproduce the driving style of an
individual driver.

Rosenfeld et al. [28], [29] present a group-based approach
to the prediction of the driver’s preferred ACC gap setting
and when they tend to engage and disengage ACC. They
cluster drivers who participated in a field test of driving
behavior with ACC to create three general driver profiles and
use these together with demographic information to predict
the gap setting. The emphasis is on the analysis of the data
using a regression model and decision trees and not on the
practical application of the derived models. The models are
not validated.

Another, more comprehensive, group-based approach to the
personalization of adaptive cruise control with stop and go
is proposed by Canale et al. [30]. The drivers are assigned
to one of three pre-defined clusters based on the observation
of their driving style. The cluster membership determines the
parameters of a reference acceleration profile that serves as
input to the low level controller of the ACC. The approach is
based on data from field experiments and validated by off-line
playback.

In the work by Bifulco et al. [31], [32], ACC is adapted
in real-time to individual drivers based on the observation of
their driving style. They propose an ACC controller framework
based on a linear car following model that is solved by a
recursive least squares filter (RLS) [33] to reproduce the time
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gaps observed in a short manual driving session. The vehicle
trajectory is calculated from this personalized car following
model using a linear, time-invariant dynamic system with
acceleration and jerk as state variables. The vehicle actuation
is then delegated to a low level controller. The personalized
ACC has been validated in off-line playback with satisfactory
results. This approach distinguishes between two modes to
achieve personalization: a “learning mode”, that is activated
on-demand by the driver, in which the current driving style
is observed and the corresponding parameters of the car
following model are learned, and a “running mode” in which
the newly learned car following model is deployed to the
controller.

Lefevre et al. [34], [35] choose a different approach to
controller design. They combine a learning based driver model
that imitates the individual driving style observed from the
driver with model predictive control [36] to create personalized
driving assistance. The driver model consists of a hidden
Markov model that represents human control strategies during
car following, and Gaussian mixture regression to predict
the driver’s most likely acceleration sequence. The model
predictive controller then uses this acceleration sequence as a
reference together with a confidence estimation and generates
a safe acceleration sequence that complies with state and input
constraints. The controller is evaluated by off-line playback
and is able to reproduce different driving styles.

A similar approach, also basing the control on model pre-
dictive control, is used by Ramyar et al. [37]. In their approach
the driver is modeled by random forest regression [38], and
the system uses rule-based switching between path following
mode, car following mode, and lane change mode.

Chen et al. [39] note the importance of continuous on-line
learning from the driver. They propose a personalized adaptive
cruise control system that can adapt to driver strategies in dy-
namic traffic environments by using a reinforcement learning
approach, Neural Q-Learning [40], to realize the high level
driving strategy in combination with a PID controller for the
low level control of the brake and throttle commands. The
system is tested in simulation and found to be able to keep
different expected distances in different cases in a smooth and
comfortable way when learning from an experienced human
driver.

Wang et al. [41] develop a prototype of a longitudinal
driving-assistance system, including ACC, that is personalized
to an individual driver. They propose a linear driver model
that, given the time gap to the lead vehicle and the inverse
time to collision, simulates the driver’s throttle and breaking
pedal operations. Again the system operates in either a learning
mode, in which the driver model parameters are identified
by RLS [33] with a forgetting factor from the observation
of manual driving behavior, or a running mode, in which
the learned parameters are applied to the controller. Learning
or identification of the driver model parameters takes place
whenever the driver controls the vehicle manually and is
following a lead vehicle. Once the parameters pass a sanity
check and the process has converged, the new parameters are
ready to be used by system control. This approach is the most
advanced among the ACC personalization approaches: it has
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been implemented in a vehicle and validated by tests in real
traffic.

B. Forward collision warning/brake assistance

Forward collision warning systems alert drivers of an im-
pending collision with a slower moving or stationary car in
front of them. The goal in personalized forward collision
warning is to decrease the false alarm rate of the system and to
increase the warning time to give the driver a longer reaction
time. Muehlfeld et al. [42] present a statistical behavior
modeling approach that estimates a driver specific probability
distribution of the danger level of a situation to determine
the activation threshold for a driver warning algorithm. The
model is developed on driving simulator data and results in
significantly earlier activation of the safety system than a
similar, earlier model [43], [44]. Wang et al. [45] present a
real time identification algorithm for warning thresholds by
recursive least squares along the lines of their approach [41]
to personalized ACC discussed in Sec. IV-A. Their approach
is validated by off-line playback, reduces the false warning
rate, adjusts its warning thresholds online and thus adapts not
only to individual drivers but also to behavioral fluctuations
in the same driver. Govindarajan et al. [46] demonstrate a
method for personalized brake reaction time estimation for
improved timing of forward collision warning systems. They
use supervised machine learning to predict the reaction time
from thermal facial analysis and EEG sensor readings.

C. Lane Keeping

Lefévre et at. [34] also apply their framework outlined in
Sec. IV-A to lane keeping assistance (LKA) whose task it is
to alert the driver when the system detects that the vehicle is
about to deviate from a traffic lane. Here again the aim is to
detect the lane departures early and to minimize the false alarm
rate of the system. In this application of their personalization
framework, the driver model is used to predict lane departures,
i.e., it predicts steering as well as accelerations, and the
model predictive controller keeps the vehicle in the lane.
When it is likely that the vehicle is in lane change mode
and the turn signals are not set, the upcoming lane change
is considered as unintentional and the controller takes charge
of steering. The system is shown to be less intrusive and more
effective at preventing lane departures than systems based on
the standard Time to Line Crossing (TLC) approach. The
work by Wang et al. [47] also aims to reduce the false alarm
rate of lane departure prediction systems. They develop a
personalized Gaussian mixture model based hidden Markov
model to predict whether or not a lane departure behavior
will be corrected by the driver without warning. Based on this
driver model, a warning strategy is developed. The proposed
method is validated in off-line playback and outperforms the
standard TLC and a TLC-directional sequence of piece-wise
lateral slopes method.

Wang et al. [48] present a personalized dynamic control
strategy for the steering ratio of vehicle steering systems that
aim to assist drivers in tracking a given path with smaller
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steering wheel angles and change rate of the angle by adap-
tively adjusting the steering ratio to the drivers path-following
characteristics. The system is validated in a simulator study
and found to improve the drivers’ task performance as well
as their mental and physical workload in path following.
Schnelle et al. [49], [50] also develop personalized driver
steering and desired path models that can replicate each drivers
steering wheel angle signal for a variety of highway and in-city
maneuvers.

D. Cooperative Assistance

The concept of cooperative automation [51] in ADAS has
been suggested as an approach to provide selective assistance
functions based on direct requests, typically by speech com-
mands. An example is an overtaking assistant [52] that answers
spoken information requests about relevant cars on neighbor-
ing and own lanes during a highway overtaking maneuver.
Pacaux-Lemoine et al. [53] have discussed the importance
of an adaptation of a cooperative ADAS to the personal
competences and capacities of its human user. Schomig et
al. [54] demonstrated in a simulator study that a speech-based
assistance-on-demand, emulating an attentive co-driver, is pre-
ferred by the majority of drivers over visual head-up-display of
information. They considered an intersection scenario where
the driver has to observe multiple directions for performing a
left turn into a major road. Recently Orth et al. [55] showed
that the acceptance of the assistance on demand system can
further be enhanced by estimating the acceptable gaps for each
driver individually. The system combines both an active and
an adaptive approach to personalization by allowing the driver
to control the situation-dependent activation of the assistant
system and automatically tuning the parameters according to
the observed driving patterns.

E. Lane Change

Butakov et al. [56] develop a methodology for modeling
individual driver behavior in lane changes. The method is envi-
sioned as the basis of a possible lane change driver assistance
system that may support the driver in assessing whether a
lane change maneuver is feasible and safe considering their
individual driving style. Lane changes are considerably more
complex than the driving maneuvers discussed before. The
driver needs to take into account three vehicles to judge
whether a lane change is safe and comfortable: the leading
vehicle in the own lane and the leading and following vehicle
in the destination lane. The gap acceptance, the longitudinal
adjustments to find an acceptable gap and the way the lane
change maneuver itself is performed characterize the individ-
ual driving style and all three aspects are modeled by the
authors. Avoidance of forward collisions is not considered.
The approach uses a sinusoidal lane change kinematic model
and a Gaussian mixture model to adjust the kinematic model
parameters to the individual driving style. The models are
intended to work in real time and to be updated continuously
during driving to improve the accuracy. Data are collected
from a field study and the models are validated against a
test set from the same data to show the effectiveness of the
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approach. Vallon et al. [57] develop a data-driven model of the
lane change decision behavior of human drivers that does not
depend on the driver’s explicit initiation of the maneuver by
using the turn signal lever. The lane change decision is made
by a support vector machine (SVM) based classifier. Based
on this decision, model predictive control is used to follow
the reference trajectory while satisfying comfort and safety
constraints. The model is validated in off-line playback and
is shown to be able to learn individual driving behaviors for
different drivers.

V. PERSONALIZED AUTONOMOUS VEHICLES

While the approaches discussed above are mainly motivated
from the control point of view and directly aim at designing
the control systems necessary to implement driver assistance
systems, recently a second point of view emerged that aims at
autonomous driving and that considers longitudinal and lateral
control as building blocks for autonomous vehicle control.
Those approaches often originate in robot control and employ
methods developed in that area, notably learning by demon-
stration [58]. Here the goal is to derive a suitable controller
from the observation of human behavior. This approach is
especially appropriate in tasks like vehicle control which can
be easily demonstrated but for which it is difficult to state
a cost or reward function explicitly. For learning often some
variant of inverse reinforcement learning [59] is used which
assumes that the human demonstrator follows an optimal
policy with respect to an unknown reward function. Once the
reward function is recovered, reinforcement learning can be
used to find a policy that imitates the expert. Abbeel and
Ng [59] show that their approach to apprenticeship learning
can learn different driving styles in a stylized simulation of
highway driving involving 3 lanes and 5 possible driving
actions. Kuderer et al. [60] recently consider a more realistic
scenario and stress the importance of driving style for user
acceptance in the area of autonomous driving. They use a
learning from demonstration approach to model individual
driving styles. The driving styles are encoded by a cost
function that consists of a linear combination of hand-crafted
features, such as acceleration, jerk, following distance, desired
speed, and that is derived by inverse reinforcement learning
form observed data. The learning approach is embedded in
a planning framework for an autonomous vehicle and results
in optimized trajectories that are represented by 2D quintic
splines in a continuous state space. For a viability test of their
approach the authors focus on acceleration and lane change
maneuvers. Data is collected from a field test and the ability of
the approach to model different driving styles is demonstrated
in simulation by off-line playback and the usage of an off-line
learned policy.

VI. OPEN ISSUES

So far we have discussed the emerging field of personal-
ization in assisted driving. The field has gained interest in the
recent years and a number of papers have been published that
present approaches to the design of personalized assistance
systems with tangible results, mostly in simulation but first
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steps towards prototypical implementations have been made.
These approaches focus mainly on the technical side of
personalization. However, since personalization is located at
the interface between the human driver and the vehicle and
is supposed to better adapt assistance systems or automated
driving to the drivers’ needs and expectations, the interaction
between the human and the personalized system will require
more attention. Below we outline some open issues that
deserve further attention.

A. Driving Style Preferences in Automated Driving

The general assumption of personalization approaches is
that the drivers feel most comfortable with a system adopting a
driving style that is similar to their own driving style. However,
there is little empirical evidence to support this assumption.
A discussion of the issue of driving style preferences in auto-
mated driving has only started recently. Scherer et al. [61] and
Hartwich et al. [62] investigate the relation between manual
driving style and automated driving preferences in a simulator
study without motion feedback in both older (> 65 yrs) and
younger drivers (< 45 yrs). They find that younger drivers tend
to prefer their own driving style over other styles, while older
drivers experienced their own driving style applied to highly
automated driving as less comfortable and less enjoyable than
other driving styles.

Yusof et al. [63] focus on differences between assertive
drivers, who like to drive at or above the speed limit and enjoy
high accelerations, compared to defensive drivers, who prefer
a less risky driving style in manual driving. They simulated
automated driving in a Wizard of Oz approach in real road
conditions in which the participants were placed in the back
seat. They found that both assertive and defensive driver
groups preferred a defensive automated driving style. Basu
et al. [64] conducted a similar study in a driving simulator
without motion feedback and confirmed these results: drivers
typically prefer a more defensive driving style when they are
passengers. In fact, they preferred a style which they believe
is their own, even though their actual driving style tends to be
more aggressive.

These first empirical results indicate that finding an optimal
driving style for individual drivers in automated driving is
more complex than it may seem at first sight. Generally drivers
will not be able to demonstrate their preferences to automated
driving systems, but an additional interactive training phase
will be necessary in which the driver will need to correct
the system to find the driving style they perceive as most
comfortable.

B. Personalization as a Continuous Process

Another aspect that is not yet fully covered is the treat-
ment of personalization as a continuous process. Often per-
sonalization is viewed as something that is finished once
a personalized system is achieved. Yet Adomavicius [65]
formalizes personalization as an iterative cyclic process that,
if we transfer it to the automotive context, consists of a cycle
of (i) understanding the driver, i.e., observing the driving
behavior, (i¢) making available the personalized functionality
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to the driver, and (ii¢) measuring the impact and adjusting
the personalization strategy if necessary. Wang [41] was one
of the first to replace the commonly found linear approach
with such a continuously updating and improving approach.
More recently Chen et al. [39] were the first to address the
necessity of continuous on-line learning in personalized ACC
and, by using a reinforcement learning approach, to apply a
learning model that is explicitly designed to learn in interaction
with its environment. Other authors [32], [34] are aware of
variations in driver preferences and propose to consider on-
demand re-calibration of the personalization parameters [32]
to accommodate changes in driver preferences.

C. Driver Assessment of Personalized ADAS

A key element of the understand-deliver-measure cycle of
Adomavicius is the assessment of the impact of the per-
sonalization. This requires a personalization which can be
assessed by the driver in relevant situations. When looking
at the currently found personalization process as outlined in
Sec. III-A, it becomes clear that this field is still quite young:
while there are a number of approaches that envision the use of
driver models for personalization in ADAS, only few studies
actually implement a personalized controller for ADAS in
simulation [32], [34], [45], [60] and only one study reports
a prototype of a personalized controller [41] that may even
be continuously updated by driver interaction. The authors
state that they collected their participants’ opinion on the
personalized system, thus almost closing the personalization
circle, but do not report the results of the questionnaire study.
Summarizing, personalized ADAS is generally not available
yet to drivers and consequently a driver assessment of person-
alized ADAS is still missing.

D. The Human Machine Interface in Automotive Personaliza-
tion

Another important aspect in personalization, that has not
been investigated yet, is the effect of the interface design be-
tween personalized vehicle and driver. Apart from the technical
quality of the personalized system per se, the realization of the
interaction between driver and vehicle will play a decisive role
in the success of personalized systems since usability problems
may outweigh any benefit of personalization. Jameson [66]
gives an overview over such problems, as ,e.g., the need to
teach the system, unsatisfactory timing, the need for learning
by the user, and inadequate predictability and comprehensi-
bility, and outlines possible countermeasures. He stresses that
these usability side effects need to be taken into account from
the very start of the system design.

VII. A GENERAL FUTURE CONCEPT PROPOSAL FOR
PERSONALIZATION IN ADAS

Future approaches to more advanced personalized ADAS
need to take into account both explicit and implicit person-
alization methods and should be capable of real-time and
interactive adaptation of their parameters.

We propose that such an operation mode will require a clear
decomposition of the main function blocks, as we visualize in

http://dx.doi.org/10.1109/TIV.2019.2955910

Fig. 3. The three main system component columns in Fig. 3
refer to

i. HMI functions that provide the interface between driver
and vehicle,

ii. a personalization system that models individual charac-
teristics of the driver and their individual driving history,
and

iii. the ADAS function(s) with parameters that can be
adapted based on personalization.

By this decomposition we suggest to separate the driver mod-
eling from the HMI and the actual ADAS function to allow
for a more general use of personal information for different
ADAS functions. This separation is particularly important if
the system performs a continuous adaptation in interaction
with the driver. In addition to the internal interactions, all
contributing system component columns in the graph as well
as the driver need continuous access to the dynamic envi-
ronment information. Information passed within the system
should always be interpreted in relation to this environment
context. In the following we explain the functional columns
in more detail:

Explicit and implicit HMI. The interaction of driver
and vehicle is carried out via the human-machine-interface
(HMI). Some HMI input devices are directly associated to the
primary driving task, like steering wheel, brake, gas pedal,
and indicator. They serve as the main control input for the
vehicle, but they may also be used to infer individual driver
characteristics, like driving style or skill. With respect to their
use for personalization, we define these channels as implicit
HMI, because they can convey information for implicit per-
sonalization. Here two cases can be distinguished: (i) Normal
driving patterns of an unaware driver are observed and used for
estimating a driver model that is later used for personalization.
(i) The driver deliberately chooses or modifies the current
primary driving control in order to influence the immediate or
later actions of a personalized ADAS system. A simple case
may be where the driver uses a primary control to overwrite
or correct a partially automated ADAS function (e.g. manual
acceleration to overwrite a conservative gap setting for an ACC
system). The situation gets considerably more challenging
in ADAS shared control responsibility modes where driver
actions directed towards the implicit personalization have to
be distinguished from undirected regular driving control.

We define explicit input channels as those HMI input
devices which are not required for the primary driving task.
Typical examples are touch screens for infotainment and
navigation, speech recognition, or recently also gesture input.
Explicit HMI channels are used for deliberate driver-initiated
explicit personalization with its pros and cons (cf. Table I).

Analogously to the HMI input channels, we differentiate
between implicit and explicit HMI feedback channels. An
implicit feedback channel is determined by the primary driving
task and the physical reaction of the car to the combination of
human and machine control through an ADAS. In the example
of an emergency braking system, the driver directly notices
when the vehicle activates the brakes which also informs
them on a critical situation. Similarly, in the “car gesture”
concept [67], the physical reaction of the car is used for
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Figure 3. Our future concept proposal for a modular approach towards a continuously adapting personalized ADAS and HMI. The HMI components interact
via explicit channels (switches, touchscreen, speech input, etc.) and implicit channels (steering, brake, gas pedal) with the driver. Personalization components
model driver characteristics and preferences independent of single ADAS functions. ADAS functions need to interpret the driver parameters to adapt their

internal function model to the driver.

implicit communication of warnings. Weak evasive steering
movements are induced to inform the driver about approaching
dangers on or next to their lane. Explicit HMI feedback
channels, on the contrary, are not directly determined through
the primary driving task and use channels like lights, displays,
sound, or haptic feedback.

The HMI must capture all relevant explicit and implicit
driver input and provide adequate explicit and implicit feed-
back to the driver in a way that can be understood well and
merged intuitively with own action plans and patterns.

We believe that also the basic operation of the HMI should
be personalized to better adapt the interface to the driver’s
needs and capabilities. We attribute the personalization of the
HMI, however, rather to the personalization system compo-
nent, while the HMI supplies the basic channels and interface
devices to the driver.

Personalization Component. The personalization compo-
nent models the driver with respect to preferences, state,
skill, experience, and other individual traits or states. It then
supplies personal parameters to the adaptable ADAS system.
Additionally it should monitor both explicit and implicit driver
input and vehicle feedback to supply suitable personalized
feedback via the HMI. A typical example case may be
the adaptation of the HMI depending on the current skill
level of the driver and their experience with the personalized
ADAS system. The latter will be of particular importance for
continuously adapting systems. These adaptations have to be
made transparent and understandable to the drivers such that
they can establish a mental model of the system workings and
build trust in the system [68], [69].

ADAS Component. The ADAS is responsible for con-
tributing to the vehicle control or supplying the driver with
information and warnings. Based on the driver characteristics
delivered from the personalization system, internal parame-
ters are adapted using an appropriate mapping to the driver
model. The modular separation of personalization and ADAS

components ensures that multiple different ADAS may use the
personal information differently to adapt their optimal settings.

Considering the current state of the art there are no person-
alized ADAS prototypes yet that include the full functional
set of components as sketched in Fig. 3. We expect that this
clear decomposition into a strongly modular approach towards
personalized ADAS will be particularly beneficial for more
complex future scenarios with multiple assistance functions.
In this case the different assistance functions will contribute
different aspects to the driver model. It is then the role of the
personalization component to build a coherent representation
and adapt the different assistance functions in a consistent way.

VIII. CONCLUSION

We have provided a survey of the current state of the
art for personalization in advanced driver assistance systems
and autonomous driving. In our overview we concentrated on
methods that combine individual driver models and controllers
for the design of personalized ADAS. The main target in
personalizing ADAS is to improve driver acceptance and
system usability. This is relevant in safety critical applications
where warnings and their timing should be adapted to the
driver’s skills and needs for preventing disuse of the system.
Personalization also contributes to safety in adapting warning
times to the individual driving skills and patterns. Similar
adaptation can be applied to comfort functions like adaptive
cruise control.

Personalized ADAS are implemented by training driver
models from driver behavior observation and then designing
vehicle controllers that can be parameterized to adapt to
specific driving styles using these models. Consequently, a
first main focus in the field were adaptable and parameterized
models for ADAS functions like adaptive cruise control,
forward collision warning, lane keeping, lane change, and
autonomous driving. While most demonstrations are carried
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out in simulation based on real field data, some work towards
real prototypes is in progress.

Since the field is rather young there are still several open
questions with respect to the technical realization of personal-
ization as well as the interaction of driver and personalized ve-
hicle. Personalization is currently mainly investigated as a pro-
cedure carried out once at the beginning of a drive or requested
repeatedly by the driver. Most approaches lack concepts for
a continuous interaction with the driver for an incremental
improvement of the personalized ADAS. The increased avail-
ability and capability of personalized systems will, however,
require more intuitive sophisticated HMI models to make the
full function range easily accessible to the driver. We expect
that this can be best achieved by also personalizing the HMI to
individual driver capabilities, needs and preferences. Another
important concept for the HMI design is the differentiation into
explicit channels where HMI operation is not directly coupled
to driving and implicit channels which employ the primary
driving controls for implicit information transmission to the
personalized ADAS. We believe that special care will have
to be taken to make the role and effect of the two channels
understandable to the driver.
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