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Abstract

The aim of this technical report is to highlight some approaches for graph representa-
tions of 3d-information of biomolecules which can be used for their structural and infor-
mation theoretic characterization. Particularly, the report deals with the determination
of graph representations reflecting the internal structure by means of prototype-based
methods known from machine learning.
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1 Introduction

The automatic analysis of databases for biochemical molecules and structures is a
rapidly growing field in bioinformatics, which is accelerated by the increased number
of machine learning tools and approaches. Frequently, this involves the computational
comparison of respective molecule structures. In [10], an information theoretic tool was
proposed for sequence analysis and comparison – the mutual information function.
Recently, this approach was extended for 2d-structures represented by graphs.

In this contribution we present a further extension of this method for molecules given
by their 3d structure information. For this purpose, we adapt machine learning algo-
rithms - the so-called topology representing neural network (TRN) also known as neural
gas (NG) vector quantizer proposed in [30, 29] and a k-nearest neighbor approach.

1.1 Fingerprinting structures

The comparison of molecule structures is the foundation for many data analysis and
machine learning applications in the chem- and bioinformatics domain [51, 25, 36].
Direct use of raw 3d coordinates is unfavourable, as translation, rotation and permuta-
tion events cannot be captured adequately [19] and no task-specific domain knowledge
may be integrated in the comparison process. Therefore, the molecule’s 3d-information
needs to be transformed into a representation suitable for machine learning models
[47].

There are numerous approaches in order to do so as listed in [19]: It is distinguished
between approaches that consider the full structure in terms of voxelization [43], tor-
sion angles [1] or protein graphs [49] and approaches that extract structural features
regarding the proteins surface [18], secondary structure or inter-residue distances [2].
In analogy to the Word2vec embedding [34, 35] in natural language processing, proce-
dures like Mol2vec [24] learn a suitable molecule representation by means of machine
learning models.

1.2 3d-Structure-Graphs by means of Delaunay tesselation

Foremost, the handling of proteins as graphs has gained interest [49], especially in
the context of graph neural networks [40]. Thereby, the explicit design of the graph
(in terms of node and edge attributes) is subject to the user and the given task. In
general, a connectivity relation needs to be defined between the components of the 3d
structure, i.e. the measured (relative) positions in R3 of their components.

To avoid arbitrarily chosen cutoffs to define neighbourhood in terms of the Euclidean
distance, the Delaunay tessellation (or more precisely the unique Delaunay graph with
respect to the Voronoı̈ tessellation) of protein structures is well-known since its first
mentioning in [44]. Applications involve structural alignment [23], structural topology
comparison [11], studying the functional impact of mutations [33] and exploring graph
theoretic properties of residue contact networks [46]. An overview of its applications for
studying protein-related interactions and protein structure is given in [52]. What serves
as nodes in this graph is up to the user: evident are the Cα atoms or the center of
mass of the amino acids. Alternatively, individual atoms or collections of them may be
considered [46].



While the full Delaunay graph captures internal connections, it also comes with the
disadvantage of unwanted edges, especially on the protein surface. That is, it does
not reconstruct the expected intuitive surface of the protein. In order to do so, post-
processing of the obtained full Delaunay graph is required, i.e. removal of edges the
lengths of which exceeds an arbitrary positive threshold (usually measured in Å) is
common [11, 32].

Further, the numerical complexity of the full Delaunay graph determination is costly:
Suppose N vectors in xk ∈ Rn. The Delaunay triangulation of them can be extracted
from the convex hull of a suitable set obtained by the lifting operation xk 7→ x̃k =
(x̃k,1, . . . , x̃k,n+1)

⊤ ∈ Rn+1 with x̃k,j = xk,j for 1 ≤ j ≤ n and x̃k,n+1 =
∑n

i=1 x
2
k,i. Then

the edges of the convex hull of those points in the n + 1-dimensional space connect
the images of those points that are connected in the Delaunay triangulation, which
takes time complexity O

(
N ⌈n/2⌉+1

)
to calculate them and requires O

(
N ⌊n/2⌋) memory

capacity for intermediate results [14].
Hence, in the light of this numerical complexity, efficient approximations are appre-

ciated keeping in mind that for 3d-structure estimation the full Delaunay graph has to
be reduced applying heuristic strategies. .

1.3 Graph features

For applicability in distance-based machine learning approaches like [39, 17, 48], meth-
ods to compare graphs by quantifying their shared or discriminating features, i.e. object
commonalities or differences, are in need. This may be achieved by considering spec-
tral distances or distances based on node affinities [50]. Alternatively, features like the
average path length, betweenness, closeness centrality, density or transitivity [13] are
promising in combination with a suitable distance measure.

Another approach is to draw on information theoretic features to characterize graphs
in terms of inherent relations, context information and topological attributes, especially
in the cheminformatics context [21, 16].

Information theoretic features such as the mutual information have excelled in the
analysis and characterization of molecular sequences [15, 26, 27]. Thereby, the mu-
tual information function (MIF), also known as average mutual information (AMI) [4],
is promising to characterize short and long term correlations [22, 6, 45]. In [10], a
resolved version of MIF was introduced which steps beyond the Shannon notion of
entropic information [41] by considering a respective Rényi variant [38]. This is to be
distinguished from the prevailing use of mutual information in the context of multiple
sequence alignments [20, 42, 8].

The MIF was extended in [9] for fingerprinting chemical compounds in the shape of
structural formula graphs for molecular screening and machine learning applications.

1.4 Outline of the paper

In this contribution we consider two strategies for converting 3d molecules into graph
representations such that graph feature based method like graph-MIF become avail-
able for in depth-feature analysis [9]:

In section 2.1, we present a method to capture internal connections related to the
Delaunay graph, which, however, avoids the problem of long surface edges in the first



place by an alternative calculation of the tessellation based on the competitive Hebb
rule and prototype based learning (neural gas)[31]. Further, we introduce in section
2 an intuitive nearest neighbours approach related to neural gas but incorporating a
k-nearest-neighbor strategy.



2 Graph representations of biomolecules

Structural information of molecules can be retrieved from respective databases like
the Protein Data Bank (PDB) [5]. This section describes the transformation of 3d co-
ordinates into graphs covering different aspects of the molecule: either their surface
information or their inner relations. As addressed in the previous section, these orig-
inal coordinates may correspond to a molecule’s individual atoms, Cα atoms or the
center of mass of the amino acids.

All of the following approaches yield a graph representation. As there are various
equivalent notations of graphs, we simply focus on those by maybe (non-negatively)
weighted adjacency matrices, denoting whether pairs of vertices are adjacent or not or
are related by the respective weight.

2.1 Molecule raphs by Delaunay tessellations obtained by prototype-
based models

We start with the definition of Delaunay tessellations of the Rd given a finite subset
S ⊂ Rd:

Definition 1 Let s1, . . . , sn be the points in S ⊂ Rd. Then the Voronoı̈ cell of si is
denoted by Vi. It is defined as the set of all points in Rd, which are closest to si:

Vi =
{
p ∈ Rd | d(p, si) ≤ d(p, sj), 1 ≤ j ≤ n, j ̸= i

}
where d(p, si) is a given dissimilarity measure.

Clearly, any two Voronoı̈ cells have disjoint interiors but they may intersect along
their boundaries and share a common border, in which case they are called neighbours.
Clearly, no two Voronoı̈ cells can share more than one side and together, the n Voronoı̈
cells cover the entire Rd. The Voronoı̈ diagram of S, denoted by V or(S) is the set of all
Voronoı̈ cells of points of S: V or(S) = {Vi | 1 ≤ i ≤ n}. It is also denoted as Delaunay
or Voronoı̈ tessellation of Rd.

Definition 2 Let V or(S) be a Voronoı̈ tessellation of Rd for a finite set S ⊂ Rd. The
corresponding Delaunay graph takes the points si ∈ S as nodes. Two nodes si and sj
are connected in this graph iff their Voronoı̈ cells are neighbours.

Remark 1 The Delaunay graph is the mathematical dual to the Voronoı̈ diagram of S.
If a Voronoı̈ tessellation of the Euclidean plane is considered, the Delaunay graph is
also denoted as the Delaunay triangulation of S.

Interestingly, the Delaunay triangulation of a set S of points in Rd is related to the
set’s convex hull in Rd+1 via the so-called lifting transform [12, 3, 37].

Applied to 3-dimensional Euclidean data, it yields an aggregate of non-overlapping
(except the shared borders for neighboured Voronoı̈ cells) space-filling irregular tetra-
hedra [44].

In the next step we consider a (continuous) manifold M ⊂ Rd with the Euclidean
norm as the underlying topological assumption for the tessellation with respect to a
finite set S ⊂ M .



Definition 3 Let M be a (continuous) manifold M ⊂ Rd and S ⊂ M be a finite subset.
Let V or(S) be the Voronoı̈ diagram of Rd with respect to S with Voronoı̈ cells Vi. The
masked Voronoı̈ cells Ri are defined as the intersection Ri = Vi ∩M .

The tessellation of M using masked Voronoı̈ cells was introduced by T. MARTINETZ
in [30] for the investigation of Topology Representing Networks (TRNs). We denote
those tessellations as masked tessellations. The masked Delaunay graph is the sub-
graph of the Delaunay graph as the dual of the masked tessellation.

In the next step we explain a method to determine the masked Delaunay graph
proposed in [30]. To do so, we need the following definition:

Definition 4 The set (distribution) S of the points si ∈ M, i = 1 . . . n is dense on the
manifold M with topology induced by a given norm, if for each v ∈ M the triangle
∆(v, si0 , si1) is completely contained in M whereby si0 and si1 denote the first and
second closest point to v w.r.t. the norm, respectively.

Remark 2 Obviously but worth to be mentioned: If M is convex with respect to the
given topology, any arbitrarily chosen set W ⊂ M constitutes a dense subset.

Now we can state the following theorem proposed in [30]:

Theorem 1 If the distribution S of the points si is dense on M with respect to the
given norm, the part of the Delaunay triangulation that is formed by a competitive Hebb
Learning algorithm is the induced Delaunay triangulation.

Algorithm 1 Determination of the induced Delaunay graph by competitive Hebb learn-
ing for a given norm

1: procedure INDUCED DELAUNAY GRAPH(M,S)
2: initialize the adjacency matrix C by Cij = 0 ∀ i, j
3: repeat
4: randomly select a sample (stimulus) v ∈ M
5: competition: determine ||v − si0|| ≤ ||v − si1|| ≤ . . . ≤ ||v − sin−1|| using the

↪→ given norm
6: if Ci0i1 = 0 then
7: set Ci0i1 = 1 (Hebb-learning)
8: until convergence
9: return adjacency matrix C

The pseudo-code of the competitive Hebb Learning algorithm is given by algorithm
Alg. 1, returning the adjacency matrix C. This matrix can be taken as the connectivity
matrix of the points (coordinates). It should be mentioned that this procedure/algorithm
corresponds to a variant of the Neural Gas algorithm [31] to learn topological manifolds
– the above mentioned TRN.

In the biochemical context, we consider the set S as given atom coordinates si ∈
M, i = 1 . . . n of a molecule’s 3d structure with M ⊂ R3. Thereby, in order to execute
the algorithm consistently, we need to define M in agreement with the given set of
points. In particular, we require in the assumptions of the Theorem 1 that S is dense
on M . Here M is an appropriately chosen subset of Rd reflecting the 3d-shape of



the considered molecule. For example, M could be chosen as the minimum cuboid
containing S.

Another possibility is to approximate M by so-called β-ball masks: for each si ∈ S,
the β-ball is the sphere Bβ

i ∈ Rd with radius β surrounding si. Then M is obtained
as M = ∪si∈SB

β
i . For the above algorithm, one has to choose a sufficient number of

stimuli uniformly distributed in M .
Last, we have can state that the convergence time of the approach to approximate

the true graph structure grows roughly as O
(
N

⌈n∗/2⌉+1
S

)
in analogy to full triangulation

but where n∗ is the intrinsic data dimension (Hausdorff-dimension), for which usually
n∗ ≪ n is valid. The capacity requirements are O (N2

S +NS · n) and, hence, much less
compared to the full approach.

2.2 The k-nearest neighbours approach for constructing the adja-
cency matrix

We present here an alternative way to construct the adjacency matrix for molecules
based on a heuristic combining the Neural Gas [31] and graph theory’s k-nearest
neighbours algorithm. Unlike the previous method, this approach does not explicitly
rely on the Delaunay graph. We suppose a finite set S ⊂ Rd which would be the set of
atom coordinates in the above mentioned biochemical context. We suppose n atoms
in the following.

The algorithm is presented as Alg. 2.

Algorithm 2 k-nearest neighbor algorithm for adjacency matrix generation
1: procedure k−NEAREST NEIGHBOR(S)
2: initialize t = 0, ∆t > 0 and a randomly selected set of points W

↪→ (W ⊂ Rd, |W | = N ≤ n, 1 < k << N )
3: repeat
4: select a point s ∈ S ⊆ Rd randomly
5: find (k + 1)-nearest points wj ∈ W to s using the dissimilarity measure

↪→ d (s,wj) in S
6: add edges in W between the closest point to every other k-nearest point

↪→ (modified Hebb)
7: move (k + 1)-nearest points wj ∈ W towards s, proportionally to their

↪→ distance from it
8: if there are any crossing edges and N ≤ n is valid then
9: add a point to W such that the crossing is resolved

10: remove those edges which are not refreshed in the last ∆t steps
11: time increment t = t+ 1
12: until convergence
13: return adjacency matrix C of W

Finally, the adjacency matrix of W represents the adjacencies (topological relations)
in S whereby the vectors wj ∈ W are approximations of the atom coordinates sj.
The set W could be initialized to be a finite uniform representation of the manifold
M = ∪si∈SB

β
i using the β-balls. It is worth mentioning that this method generates



the adjacency matrix representing the inner structure of molecules, rather than their
boundaries.

2.3 Characterizing molecule graphs by their mutual information
function

In machine learning approaches for molecule investigations, efficient methods for mol-
ecule comparisons are required. The graph mutual information function introduced in
[9] gives the possibility to extract topological information about the molecules from their
graph representations. For this purpose, the graphs are considered as labeled graphs,
where the node labels are determined as the categories of atoms/components of the
investigated molecules. The mutual information function reflects the spatial correlations
in an information theoretic manner and can be used as characteristic feature vectors
for machine learning methods not restricted to graph neural networks.

In particular, by means of this approach, vector quantization methods [7] become
applicable which belong to the class of interpretable machine learning approaches [28].

3 Conclusion and Future Work

In this contribution, we propose strategies for representation of 3d molecules as graphs
that put focus on either the components inner relations or molecule surface properties.
From these graphs, information theoretic concepts and quantities can be derived in
order to characterize spatial correlations between the atoms. Particularly, graph-MIF as
described in [9] allows the generation of those features for data analysis and machine
learning applications.

The surveyed approaches for graph generation raise several starting points for fu-
ture research:

First of all, the presented methods are flexible with regard to the data basis for
generating the graphs. This could be the 3d information of whole biomolecules, as
assumed here so far. Alternatively, only parts known for functional relevance such
as binding sites may be taken into account for graph generation, allowing a different
perspective on the molecule.

Furthermore, in the context of internal structure graphs, the two concepts for ex-
cluding non-relevant long outer edges generated by simple algorithms must be related
or contrasted more closely: on the one hand side, preventing the emergence of these
edges in advance, realized by topology representing networks with a suitable mask,
and on the other hand, removing these edges from the standard Delaunay graph after-
wards.

The advantages and disadvantages of the TRN method compared to the Delau-
nay triangulation for the reconstruction of protein graphs should be investigated in real
world applications for reliability. We see possible applications in the context of graph-
based structural alignments [23].

The versatility of the MIF approach allows a comprehensive understanding of bio-
molecules: We can investigate the same molecule on different levels and thereby con-
sider different information, i.e. that of the protein sequence (1d) and of the structure
(3d). It is to be investigated whether a mapping can be made/learned between the two.
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