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Preface

From 10. to 12 July 2024 we had the pleasure to organize and attend the 16 th Mittweida
Workshop on Computational Intelligence (MiWoCi 2024) as a satellite event of 15 th Work-
shop on Self Organizing Maps (WSOM+ '24). Thus the tradition of scienti�c presentations,
vivid discussions, and exchange of novel ideas at the cutting edge of research was continued.
They were connected to diverse topics in computer science, automotive industry, and machine
learning.

This volume contains a collection of extended abstracts and short papers which accompany
some of the discussions and presented posters of the MiWoCi Workshop, which cover theoretical
aspects, applications, as well as strategic developments in the �elds.

Apart from the scienti�c merrits, this year?s seminar came up with the great chance to
attend the 15 th Workshop on Self Organizing Maps and Beyond (WSOM+ '24). WSOM+ is
the major anchor conference focusing on Self Organizing Maps and is not only a perfect chance
to met high renowned researchers in the �eld but also to attend the three invited plenaray talks
given during WSOM 2024:

� John Aldo Lee - Université catholique de Louvain, Belgium

� Peter Tino - University of Birmingham, United Kingdom

� Barbara Hammer - University Bielefeld, Germany

This year the MiWoCi Workshop was also accompanied by a poster spotlight at the WSOM
2024 for each poster contribution. Our particular thanks for a perfect local organization of the
workshop go to Thomas Villmann and his team as spiritus movens of the seminar and his PhD
and Master students.
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Iterated Relevance Matrix Analysis (IRMA): Improved
Robustness and Interpretability of Feature Relevances

Elina L. van den Brandhof1,2a, Sofie Lövdal1,2b,James M. Hawley3,4,
Lorna C. Gilligan 5, Angela E. Taylor6, Wiebke Arlt3,4, and Michael Biehl1,5

1 - Univ. of Groningen - Bernoulli Institute for Mathematics, Computer Science
and Artificial Intelligence, Groningen, NL

2- Univ. Medical Center Groningen (UMCG), NL, (a) Dept. of Neurology,
Groningen, (b) Dept. of Nuclear Medicine and Molecular Imaging

3 - Medical Research Council Laboratory of Medical Sciences, London, UK
4 - Imperial College, Inst. of Clinical Sciences, Fac. of Medicine, London, UK

5 - Univ. of Birmingham, Inst. of Metabolism and Systems Research, UK

Abstract
Iterated Relevance Matrix Analysis (IRMA) [1] involves the iterative re-training of

Generalized Matrix Learning Vector Quantization (GMLVQ) systems [2]. In each step,
previously identified discriminative directions are projected out and the iteration pro-
ceeds until no further class-specific information can be found. As an illustrative example
problem, we apply IRMA to the classification of adrenocortical tumors based on steroid
metabolomics data [3, 4]. In order to demonstrate the usefulness of the IRMA approach,
we consider training from very small and imbalanced data sets. Extending the basic idea
of [1], we suggest the construction of a combined relevance profile from all discriminative
IRMA iterations. The combined relevances are shown to be more robust against variations
in the training set and class imbalance than original GMLVQ. In addition, we design a
distance based classifier using the combined relevance matrix and compare its performance
with that of unmodified GMLVQ when applied to previously unseen, prospective data.

References
[1] S. Lövdal and M. Biehl. Iterated Relevance Matrix Analysis (IRMA) for the identification of

class-discriminative subspaces. Neurocomputing, Art. No. 127367, 2024.
[2] P. Schneider, M. M. Biehl and B. Hammer. Adaptive relevance matrices in Learning Vector

Quantization. Neural Computation, 21(12):3532-3561, 2009.
[3] W. Arlt, M. Biehl, A. Taylor et al. Urine steroid metabolomics as a biomarker tool for

detecting malignancy in adrenal tumors. J. Clin. Endocrinol. Metab. 96(12):3775-84, 2011.
[4] I. Bancos, A.E. Taylor, V. Chortis et al. Urine steroid metabolomics for the differential

diagnosis of adrenal incidentalomas in the EURINE-ACT study: a prospective test validation
study. The Lancet Diabetes & Endocrinology, 8(9):773-781, 2020.
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Rediscovering Chaos? Analysis of GPU
Computing Effects in Graph-coupled NeuralODEs

Simon Heilig

Friedrich-Alexander University Erlangen-Nürnberg, M.Sc. Data Science
simon99.heilig@gmail.com

1 Motivation

In physical systems that can be described in terms of (non-)linear differential
equations, future states can be deterministically predicted just by knowing the
past states. If the equations can not be solved analytically by means of the
Fourier transformation, numerical schemes integrate the systems with finite pre-
cision. Among the first known systems that exhibit high sensitivity to the ini-
tial state, are the 3-body problem or Lorenz’ system of three first order non-
linear coupled equations [8]. This means, that different initial states within a
small neighborhood can posses divergent trajectories. These perturbations are
inevitable with numerical schemes that rely on finite floating point precision.

Recent works on the conjoining of dynamical systems and neural networks
focus on so-called neuralODEs [1], i.e., dynamical systems parameterized with
neural networks. It can be shown that nonlinear time-dependent systems gener-
alize the forward pass in neural networks with residual connections, e.g., ResNets
derived from a continuous ODE [5]:

∂x(t)

∂t
= σ(W(t)x(t) + b(t)), (1)

that can be discretized by the forward Euler scheme (∂x(t)∂t ≈ x(t+ϵ)−x(t)
ϵ ) to

result in x(n+1) = x(n)+ ϵσ(W(n+1)x(n)+b(n+1)). Here, W ∈ Rd×d,b ∈ Rd are
the parameters of the system with state x ∈ Rd at time t = ϵn ≥ 0 and σ is a
nonlinear activation function, e.g., tanh or ReLU.

Deterministic chaos can play a central role in graph-coupled neuralODEs [7]
since they represent nonlinear coupled systems, a necessary condition for chaos [8].
When integrating such systems, which can be seen as the forward pass of a
layer-wise graph neural network, numerical errors of the integration method, fi-
nite floating point precision and non-deterministic GPU operations influence the
possibly chaotic trajectory of the state. Hence, this work is devoted to experi-
mentally investigate these compounding effects and to assess the reproducibility
of results when computing with GPUs.
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2 Graph-coupled NeuralODEs

The solution of the initial value problem (IVP) formulated in [7]:

∂X(t)

∂t
= σ(X(t)W(t) +AX(t)V(t) + b(t))

X(0) = X0
, t ∈ [0, T ], (2)

is a continuous perspective on the layer-wise message-passing framework [3] for
graph neural networks. Here, X ∈ Rn×d is the feature matrix of n nodes in an
undirected graph G = (V, E) with node set V and edge set E summarized in the
adjacency matrix A ∈ {0, 1}n×n. The output X(T ) at the terminal time T > 0
is taken as embedding of the nodes for computing downstream tasks like link
prediction, node classification, or even global graph regression [6]. Hence, the
dynamics in Eq. (2) are seen as an information processing system on a graph.

Applying the forward Euler scheme to Eq. (2), a residual message-passing
neural network is obtained:

x(n+1)
u = x(n)

u + ϵσ(W(n+1)x(n)
u +

∑

v∈Nu

V(n+1)x(n)
v + b(n+1)), ∀u ∈ V. (3)

Looking at the single node perspective, the explicit neighborhood coupling be-
comes visible in Eq. (3). The update function with the central neighborhood-
aggregation can be implemented in Pytorch-Geometric [2] to parallelize the com-
putation per node and obtain a fast neighborhood aggregation by using the
atomic scatter1 operation with non-deterministic ordering of the neighbors in
Eq. (3).

3 Experiments

Setup. Employing the graph property prediction from [4], this experiment com-
pares GPU and CPU computing effects while training the discrete graph neural
network in Eq. (3). The node-regression task is comprised of predicting the ec-
centricity of each node (the maximum length of all shortest paths rooted at
the node). Via random seeds, the batches are guaranteed to be the same in
each training process. Each model is trained 100 times, each with a total of 1500
epochs and a patience of 100 epochs for early-stopping when the validation mean-
squared error (MSE) stops to decrease. Adam optimization with learning rate
0.003 and weight decay of 10−6 is used to repeatedly perform a model selection
of the graph neural network Eq. (3) on the number of layers L ∈ {1, 5, 10, 15, 20}
with integration step size ϵ = 1.0.

Results. Figure 1 shows the log10 MSE score on the test set obtained after 100 in-
dependent training runs for L = 10 on either pure GPU, GPU with deterministic
operations enforced or pure CPU. Next, the repeated model selection is summa-
rized by keeping track of the selected best-performing model for GPU-based
training compared to the CPU-based ranking of evaluation set performance.
1 https://pytorch-scatter.readthedocs.io/en/latest/functions/scatter.html
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GPU Computing Effects in Graph-coupled NeuralODEs 3

L Ranked #1 CPU Rank
1 0 5
5 0 4
10 74 1
15 12 3
20 14 2

Fig. 1. Left) Test performance on Eccentricity for L = 10 alongside the early-stopped
epoch for all 100 independent training runs. Right) Summary of the repeated model
selection. It shows how often the GPU-trained models were selected as best performing
on the evaluation set as compared to CPU-trained ranking.

4 Discussion

From the experiment conducted herein, it becomes evident that the exponential
receptive field of message-passing neural networks leads to significant numer-
ical differences in the downstream task behavior when computing with GPU.
Deterministic scatter operations help to mitigate this problem at the cost of
increased computation time. Chaotic behavior in terms of downstream task dif-
ferences could not be observed when using finite precision CPU integration.
Future work should study GPU-accelerated neighborhood computations that do
not suffer from the exponential propagation of numerical errors but maintain
the efficiency.

References

1. Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural Ordinary
Differential Equations. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing
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2. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric.
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Coping with Drift in Hyperspectral Sensor Data

Valerie Vaquet, Barbara Hammer

Bielefeld University, Germany

Abstract

Hyperspectral imaging (HSI) constitutes an advanced sensor technology with appli-
cations in many fields ranging from earth observation to quality control. It can play a
crucial role in investigating climate change, for instance, by remote sensing [7, 16, 14], and
support coping with the associated consequences, for example as an assisting tool in agri-
culture [9, 1, 12]. Especially the application of HSI will further expand with the increasing
availability of low-cost multispectral gadgets, which combine the advantage of a flexible
application with being more affordable than complex hyperspectral cameras [1, 13].

Many tasks can be automated by coupling HSI sensors with machine leanring (ML)
algorithms. Next to application in earth observation, e.g., estimating drought stress in
forests [14, 2], and agriculture, e.g., detecting different kinds of sickness in plants in an
early stage [9, 17], there are many more case studies of successful applications. Some
examples are quality control in food production [4] and pharmaceutical applications [11],
water resource management [6], medical diagnosis [10], artwork [8], and forensic document
analysis [3]. However, when applying ML to sensor data, there is the risk of so-called
sensor shifts harming the performance of the ML model. Minor changes in a sensor or
across different instruments can induce differences in the data distributions [5, 15]. These
can make models inaccurate or, in severe cases, render them useless. Retraining the models
is expensive due to the associated labeling effort. Thus, this is not an option for low-cost
HSI sensors since the cost for labeling and retraining would exceed the price for the sensor.
In this work, will focus on this issue by investigating the following research questions:

• How can HSI sensor shifts be characterized?

• What are suitable methodologies to mitigate the effects of sensor shifts on machine
learning models?

References
[1] T. Adão, J. Hruška, L. Pádua, J. Bessa, E. Peres, R. Morais, and J. Sousa. Hyperspectral

Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture
and Forestry. Remote Sensing, 9(11):1110, Oct. 2017.

[2] J. Behmann, J. Steinrücken, and L. Plümer. Detection of early plant stress responses in
hyperspectral images. ISPRS Journal of Photogrammetry and Remote Sensing, 93:98–111,
July 2014.
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A Measure Theoretic Approach to
Concept Drift in Infinite Data Streams

Fabian Hinder and Barbara Hammer

Bielefeld University, Germany

Abstract

In the context of batch learning, it is commonly assumed that a finite amount of data
is generated from the same distribution during training, testing, and application, which
remains unchanged over time. However, this assumption is not realistic. Most data sources
spontaneously generate new data over time, resulting in an ultimately infinite amount of
data – a setup considered in stream learning. In addition, the distribution underlying the
data is subject to change due to constant changes in the environment – a phenomenon
known as concept drift. Currently, there is no general theory on how to extend the concept
of probability distributions, which is crucial in all of probability theory, statistics, and
machine learning theory, to this setup. Approaches such as considering the data as a
stochastic process [3, 1], sample-based approaches [2], or distribution processes [4, 5] are
relevant, but lack certain aspects. In this work, we suggest a generalization of the concept
of probability distributions in a way that allows us to capture the properties of data streams
with concept drift. We start by considering distributions on time windows, which is an
important concept in many stream learning algorithms. We then show that, under mild
assumptions on the relationship between window distributions, all data in a stream can be
described by a unique, potentially infinite measure on data and time. This construction
is analogous to the notion of holistic distributions considered in [4, 5] and agrees with it
in the case of a finite time horizons and data from standard Borel spaces.

References
[1] A. Agarwal and J. C. Duchi. The generalization ability of online algorithms for dependent data. IEEE Trans-

actions on Information Theory, 59(1):573–587, 2012.

[2] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia. A survey on concept drift adaptation.
ACM computing surveys (CSUR), 46(4):1–37, 2014.

[3] S. Hanneke and L. Yang. Statistical learning under nonstationary mixing processes. In The 22nd International
Conference on Artificial Intelligence and Statistics, pages 1678–1686. PMLR, 2019.

[4] F. Hinder, A. Artelt, and B. Hammer. Towards non-parametric drift detection via dynamic adapting window
independence drift detection (dawidd). In International Conference on Machine Learning, pages 4249–4259.
PMLR, 2020.

[5] F. Hinder, V. Vaquet, and B. Hammer. One or two things we know about concept drift – a survey on monitoring
evolving environments, 2023.
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Online Learning Dynamics in Layered Neural Networks

with Arbitrary Activation Functions

Otavio Citton, Frederieke Richert, Michael Biehl

Institute for Mathematics, Computer Science and Arti�cial Intelligence,

University of Groningen, The Netherlands

Abstract

Activation functions are a fundamental piece of a neural network architecture. Its non-
linearity is what allow the network to have the ability of approximate more complicated
rules. Understanding the role these functions play in the learning dynamics is of funda-
mental importance and might permit us to design more e�cient and more interpretable
models, two problems that the �eld of machine learning having been facing since the
introduction of deep learning and the large amount of data necessary to train the models.

We revisit and extend the statistical physics based analysis of layered neural networks
trained by online gradient descent [1, 2]. We focus on the in�uence of the hidden unit
activation functions on the typical learning behavior in model scenarios. Expanding ac-
tivation functions in terms of Hermite polynomials enables us to extend the formalism
to the analysis of soft committee machines with arbitrary activation in student-teacher
scenarios. This approach requires much lower computational e�ort than naive numerical
integration, which is practically infeasible. Moreover, it now becomes possible to treat
mismatched scenarios in which the student activation function di�ers from the one used
in the target rule de�nition. This makes it possible to study realistic models of machine
learning.

This presentation is based in our results from [3] that was accepted for publication in
the ESANN 2024 proceedings.

References

[1] D. Saad and S. A. Solla. On-line learning in soft committee machines. Phys. Rev. E,
52:4225-4243, Oct 1995.

[2] M. Straat and M. Biehl. On-line learning dynamics of ReLU neural networks using
statistical physics techniques. In M. Verleysen, editor, Proc. European Symposium
on Arti�cial Neural Networks (ESANN), pages 517-522, 2019.

[3] O. Citton, F. Richert, and M. Biehl. On-line Learning Dynamics in Layered Neu-
ral Networks with Arbitrary Activation Functions. In M. Verleysen, editor, Proc.
European Symposium on Arti�cial Neural Networks (ESANN), (To be published in
October, 2024).
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GMLVQ for fMRI Analysis in the Context of Movement
Disorders

Mariya Shumska1,2,3, Jelle Dalenberg1,2, Remco Renken4, Marina de
Koning-Tijssen1,2, and Michael Biehl3

1Expertise Center Movement Disorders Groningen, University Medical Center
Groningen, The Netherlands

2Department of Neurology, University Medical Center Groningen, University of
Groningen, the Netherlands

3Bernoulli Institute for Mathematics, Computer Science and Artificial
Intelligence, University of Groningen, The Netherlands

4Department of Neuroscience, University Medical Center Groningen, University
of Groningen, the Netherlands

Abstract
Hyperkinetic movement disorders (HMDs) are characterized by excessive, involuntary

movements that significantly affect patients’ quality of life. Cortical myoclonus, a specific
type of HMD, manifests as brief, involuntary muscle jerks, and is caused by abnormal
activity in the central nervous system [1, 3]. However, its underlying mechanisms remain
not fully clear. Analyzing fMRI data, which provides critical insights into brain activity,
can be instrumental in filling the gaps in our understanding of myoclonus.

In this project, we use a prototype-based algorithm called Generalized Matrix Learn-
ing Vector Quantization (GMLVQ) [2]. It is robust in handling high-dimensional input,
making it well-suited for complex datasets like those derived from fMRI, and it offers
interpretability of results, which is crucial for medical applications.

Our study demonstrates that GMLVQ can serve as an effective feature selection tool
and a classifier for small datasets, providing both explainability and valuable insights into
hyperkinetic movement disorders such as cortical myoclonus.

References
[1] C. D. Marsden, M. Hallett, and Stanley Fahn. 13 - The nosology and pathophysiology

of myoclonus. In C. David Marsden and Stanley Fahn, editors, Movement Disorders,
pages 196–248. Butterworth-Heinemann, January 1981.

[2] Petra Schneider, Michael Biehl, and Barbara Hammer. Adaptive relevance matrices in
learning vector quantization. Neural Computation, 21(12):3532–3561, December 2009.

[3] Hiroshi Shibasaki and Mark Hallett. Electrophysiological studies of myoclonus. Muscle
& Nerve, 31(2):157–174, February 2005.
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Towards Explainable Rejects for prototype-Based
Classifiers?

Johannes Brinkrolf, Valerie Vaquet, Fabian Hinder, and Barbara Hammer

Bielefeld University, Faculty of Technology, Germany

Abstract

Prototype-based methods constitute a robust and transparent family of machine-learning
models. To increase robustness in real-world applications, they are frequently coupled with
reject options. While the state-of-the-art method, relative similarity [2], couples the rejection
of samples with high aleatoric and epistemic uncertainty, the technique lacks transparency, i.e.,
an explanation of why a sample has been rejected.

In this work, we derive an explanation scheme for reject options in prototype-based clas-
sification from the analytical study of relative similarity in [1]. Further, we demonstrate the
potential of this explanation scheme in a classification scenario with more than two classes.

References
[1] Johannes Brinkrolf. “Learning Vector Quantization for the Real-World: Privacy, Robustness,

and Sparsity”. PhD thesis. 2023, p. 139. URL: https://pub.uni-bielefeld.de/record/
2985339.

[2] Lydia Fischer, Barbara Hammer, and Heiko Wersing. “Optimal local rejection for classi-
fiers”. In: Neurocomputing 214 (2016), pp. 445–457.
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Runtime-processing for microgravity investigations

directly attached to the experiment

Jan Auth, Mohammad Babar Jafree, Wael Aly Mansour, Florian Zaussinger

University of Applied Sciences Mittweida, Germany

Abstract

Physical experiments in microgravity, aiming for setup on the ISS, getting more and

more remote as they evolve. And so questions regarding data processing arise: How to

use results from a previous experiment in the following one, e.g. 48h later? How to make

reasoning for the next experimental setup? We give aid to formulate such questions and

answer them by providing dedicated pipelines and visualizations.

We present how we applied such a pipeline on the LAPLACE Experiment for the ISS

and present the status on the adaption to the Compact experiment heading towards a

parabolic �ight campaign in September 2024.
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