
392255 ISY Project: Dexmo hand exoskeleton

teaches how to play piano

Tobias Coppenrath
tcoppenrath@techfak.uni-bielefeld.de

Jessica Seidel
jseidel@techfak.uni-bielefeld.de

Janneke Simmering
jsimmering@techfak.uni-bielefeld.de

Summer Term 2020

1 Abstract

”Learning a new skill, such as playing sports or a musical instrument
is a great challenge. To be successful, the learner needs an extensive
supervision of an expert and a high training motivation. In this
project we will employ Dexmo hand exoskeleton [1], [2] to guide the
hand, to motivate the learner and by this to accelerate the training
process.” – ISY project description

The goal was to create a prototype program that gives haptic feedback via
Dexmo to the user for a random task, i.e. a music piece, which allows them to
practice playing the piano. The user’s improvement, i.e. his learning success,
can then be determined by calculating the error between the music piece to be
played and the actually played notes.

1



2 Introduction

Anyone who has already started learning how to play the piano will certainly
have come across a number of learning programs designed to facilitate this
process. Most programs (for example flowkey [3] or OnlinePianist [4]) proceed
in such a way that a music piece is given, which the user plays and then an
error is computed and displayed. The incoming data, i.e. the notes played by
the user, are transmitted to the program via the keyboard’s MIDI port. This is
what we wanted to take up in this project and extend it with haptic feedback
via Dexmo in such a way that the learning task is simplified and optimized, if
possible.

The feedback to Dexmo and the choice of the next piece of music should
no longer be randomly chosen at a later stage of the program’s development.
Instead, a new task corresponding to the user’s abilities should be generated.
This should support and improve the learning success of the user according to
the scaffolding principle [5]. This principle describes an improved learning pro-
cess through support and guidance, whereby this ”scaffolding”, i.e. the support,
is removed step by step to enable the user to solve the tasks independently.

3 Related work

The idea of supporting motor skill learning through haptic feedback or haptic
guidance is not completely new. Several other projects and studies have also
dealt with this topic.

That haptic feedback is an advantage in learning motor skills was shown in
a study which had a LEGO biplane model constructed with and without force
feedback [6]. Subjects who had force feedback completed the biplane in the
virtual world twice in 30 minutes on average. Subjects who trained without
haptics only achieved that once the same period [6].

Another project was a slalom ski simulation where the next movement was
announced by feedback [7]. It was found that 100% feedback is more effective
for more complicated motor tasks, while 50% feedback delivers better results
in case of simpler movements. Therefore it might make sense for us to give
feedback for all notes in the beginning and only generate feedback on difficult
parts at a later stage.

A further approach to the topic of learning motor skills with guidance was
scaffolding in neurosurgery [8]. The participants were trained with three prac-
tices: guidance, demonstration and modeling. The result of this evaluation
showed that feedback on the process is more important than feedback on the
end result, which encourages own initiative when learning. For our project, this
could mean to maybe give no feedback on mistake but rather before a tone as
a hint or while playing, and not only after the task is finished.

Some studies tested motor learning with both haptic and visual feedback.
Most of them show that visual feedback alone is very useful [9], even more use-
ful than haptic guidance alone, but best is a combination of both. However,

2



a distinction must be made here between which motor skills are learned. Vi-
sual training was more effective w.r.t. position and trajectory measures, haptic
training was more effective w.r.t. timing [10].

Haptic training has also been compared to artificial error amplification with
regard to each one’s impact on learning [11]. The task was a time-based reaction
test requiring a certain motion of the test subject. The conclusion was that
both methods promoted learning, but there was a difference between the user’s
skill levels: Error amplification had a greater benefit for more skilled subjects,
whereas haptic guidance seemed to have a greater learning impact for less skilled
ones.

A further experiment also deals with the error analysis of music pieces with
haptic support [12]. Here, different dimensions like number of notes, length in
seconds, loudness etc. are considered, which requires several different evaluation
metrics and especially onset times normalized to begin at time 0. The timing
precision measure and the velocity measure are also discussed in detail.

Another interesting paper in the context of this project deals with adaptive
firmness of guidance [13]. There, subjects performed slightly better when the
feedback was fitted to their needs instead of being fixed. The conclusion for
that experiment was that haptic guidance can lead to a short-term learning
improvement as well as to decreasing the amount of errors in training periods.

4 Method

The project consists of multiple functional components which are described in
this section. A detailed representation of the program structure is shown in the
diagram in figure 1.

The user interacts with the graphical user interface (GUI). Its main functions
are to parameterize and play the tasks and guidance, display the sheet music
and visualize the error. In the diagram, these functions are indicated by some of
the arrows pointing towards the actor. The displayed sheet music is generated
separately by module 5 in the diagram, the process is explained in section 4.2.
The mapping between the generated notes and the respective fingers is part of
the MIDI generation module (number 5) and is described in section 4.3. The
next parts, see section 4.4 and section 4.5, describe the functionality of Dexmo
and its client, module 8 in the diagram, and the communication between the
system components. Afterwards, section 4.6 characterizes the error computation
which corresponds to module 6 in the diagram and section 4.7 explains which
files are generated and how they are stored.

4.1 Graphical User Interface (GUI)

First of all, note that the GUI has no direct representation in figure 1 but takes
place at the relations between the following boxes: 1→ 4, 6→ 1 and 7→ 1.

When the program is started, the GUI shows up immediately. The first
window contains the MIDI port selection for the I/O devices, i.e. Dexmo, the

3



Figure 1: Overview of the program’s main components

keyboard and the audio output (e.g. a synthesizer like Qsynth), as shown in
figure 2. The ports of some devices, for example Dexmo, can be detected au-
tomatically and will then be preselected. Regardless of that, the user is always
able to set each port manually. When the selection is done, the respective button
invokes a switch to the main window.

The main window (see figure 3) shows the current task’s sheet music, a
graphical error representation and several buttons/interaction elements. The
shown score is converted from MIDI using LilyPond [14]. At startup, a task is
instantly generated with the default settings and also displayed. A new one can
be generated by clicking the respective button. To change the current settings,
the button Specify next Task opens the options window which will be explained
below. The adjusted settings will be applied to the next generated task. It is
also possible to use a custom MIDI file. Clicking on that button will show a file
dialog in which the desired file can be selected. Note that it will be displayed
a bit differently, since it has to be processed internally to provide having a
metronome and automatic fingering; both are explained in section 4.2. Using
MIDI files containing too few notes as well as less hand tracks than the program
is currently set to can both not be handled properly yet; an error message will
be shown in that case. The slider at the bottom can be used to adjust the bpm
with which the custom MIDI file will be played. Note that this will not change
the tempo number in the displayed sheet music as it would need to be modified

4



Figure 2: MIDI port selection window

Figure 3: Main window

5



then. The Dexmo guidance mode can be set with the drop-down menu, as long
as a Dexmo device is connected. To just listen to a task, e.g. before practicing
the first time, the Start Demo button will play back the whole piece once. To
practice it, the top button starts the task without playing back the notes. While
the task is running, the notes pressed on the keyboard are taken into account.
The errors are computed and stored afterwards. See section 4.6 for details about
the error computation and visualization.

To toggle the metronome, the respective checkbox can be used which works
for both the demo and the practicing mode.

Figure 4: Options window

In the options window, shown by figure 4, the task generation can be adjusted
in various ways. The note values that are enabled at the top will appear in the
sheet music. Below that, the user can set the maximum number of notes that
can appear per bar. The next options are the total number of bars in the piece
and the tempo in beats per minute (BPM). The possible note pitches are to be
selected in the drop-down menu, which can also depend on the choice of active
hands below. The checkboxes just enable or disable the respective hand. In
accordance, there will only be tracks for enabled hands. Further explanation
about the generation options can be found in the following section.

6



4.2 MIDI Generator

The notes forming the user’s practice task are generated randomly using a stan-
dard uniform distribution. The output score depends on multiple generation
options with different effects: The note values (duration), the amounts of notes
per bar and the note pitches (these contain values that can occur) as well as the
number of bars in total are features that directly influence the note generation.
The other options have more general roles like tempo (beats per minute) and
usage of the left, the right or both hands in the given score.

Most of these options mainly influence the task’s difficulty, and a certain
option setting used for multiple generations leads to comparable practice tasks.
This comparability enables increasing or decreasing the complexity in relation
to the user’s progress, which could also be done automatically by having the
program adjust the settings depending on the user’s performance.

In the initial program in the scope of this project, the simple time signature
4
4 is used, as it is one of the most common ones used in sheet music.

Depending on the selected task configuration (left hand only, right hand
only or both hands), the generated MIDI files contain up to 5 tracks. For each
hand, one track contains the piano notes and another one the Dexmo guidance
messages (also MIDI notes). The last track is for the metronome, which matches
the given tempo and time signature. Currently, there is an empty bar at the
beginning for only the metronome. So the notes do not start immediately and
the user can get ready and tune into the beat.

The random note generation works in two principal steps: Initially, the times
at which notes will be added to the score are randomly selected. Currently the
possible times in each bar are set to quarters, hence a bar can hold up to 4
notes depending on their duration: For example, one whole note, two half notes
or four quarter notes would fit in, but even though 8 eighth notes would add
up to a full bar, there are only 4 quarter ”slots”. In the second step, a note is
generated for each chosen time. At first, potentially infeasible durations from
the predefined range are removed, for example if the note would overlap with
the next one. If no duration is possible, the note is skipped. The last steps are
the random selection of value and pitch, both within their respective ranges.

At the very end, three extra notes are added per hand (duplicating the last
generated note) as a workaround for the automatic fingering algorithm, which
is explained in the next section.

Information about storing the generated MIDI files is provided in section 4.7.

4.3 Finding Fingerings

The open-source library PianoPlayer from marcomusy under the MIT License
is used for generating finger numbers for both generated and imported MIDI
files as well as a MusicXML file used for visualizing the sheet music with finger
numbers [15].

The algorithm is a search algorithm with the goal of minimizing the effort
of the hands by minimizing the finger’s speed needed to play the task and

7



avoiding unnecessary movements. The search space includes all feasible finger
combinations. An example for a unlikely and therefore as unfeasible excluded
fingering combination is the 3rd finger crossing the 4th.

As mentioned in the previous section (section 4.2), there were some problems
with generating the finger numbers in the form that no fingering was found for
the last three notes of each hand. This is probably due to the algorithm not
having enough information for the last notes to generate the finger information.
As a workaround, the last note for each hand was added three times at the end
of the task so that all actual notes have fingering information. This however
only works for generated tasks and not for imported MIDI files.

Another problem is that for too few notes, the algorithm doesn’t deliver any
fingering information because there is too little information for the search. In
this case, the task is regenerated with a reduced set of notes from C to G where
those 5 notes are linearly mapped to the 5 fingers. Again this only works for
generated tasks and not for imported files. If this C–G-guidance is used, the
fingering information can not be shown in the GUI because the necessary XML
file is generated through the library and is not available for this ”hard-coded”
guidance.

4.4 Dexmo Client Interface

One part of the project was to enrich the existing Dexmo Client in a way that
on the one hand allows to control Dexmo based on music, meaning that Dexmo
should provide haptic feedback for when a note should be played, and on the
other hand sends its position to the main application for further processing.
There were mainly two options for implementing the communication between
the Dexmo Client and the rest of the program: ROS and MIDI. ROS had the
disadvantages that this interface would have been the only part of the system
using ROS, so the overhead of using ROS would be required for relatively little
gain and people outside of the robotics community are usually not familiar with
ROS. So the communication with the Dexmo Client is implemented through
MIDI messages, which is platform-agnostic and consistent with the communica-
tion in the rest of the project as well as other systems in music production. For
sending out Dexmo positions and receiving commands, different MIDI message
types were used which will be explained in the following sections.

4.4.1 MIDI message commands for Dexmo

The commands sent to Dexmo need to contain all the aspects that are necessary
to provide the required haptic feedback. First, the type of feedback that is
required needs to be communicated. In the initial project phase, two types of
feedback were considered and later implemented in the Dexmo Client: impulse
and guidance. In impulse mode, the finger is moved sightly either in the direction
of the keyboard when a note should be played or away from the keyboard when
one should stop playing a note. The guidance mode guides the finger onto
the key and holds it there until it is stopped or guides the finger away from

8



the keyboard and holds it there until stopped. Next, the finger and hand, for
which the haptic feedback should be provided, needs to be contained in the
command. Lastly, since the haptic feedback for a finger should start before or
at the time of a note event from the currently played MIDI file and stop at
some point depending on the mode, the command needs to contain information
about the direction of the feedback. After considering these aspects, note-on and
note-off events where chosen for the Dexmo commands because the controlling
of Dexmo is so closely related to when notes are played. It also make sense
conceptually because note events are the only events which produce a physical
effect (playing a sound) on a device and the Dexmo commands should have the
effect of producing haptic feedback.

The aspects mentioned above are packaged in the MIDI note events as fol-
lows: One note event correlates to one note being played by one finger. It
therefore makes sense that one event is used per finger. To distinguish between
fingers, the key/note number of the message is used. Each finger is assigned to
an octave according to that finger’s number in piano sheet music (1 for thumb
to 5 for pinkie). Now the different notes in the octave can encode different feed-
back modes. However, we have two hands that need to be considered. There
are theoretically 10 Octaves from Octave 0 to Octave 9, but the ninth octave
is not complete. Using these octaves to encode both hands would in theory
be possible, but using the associated finger numbers as octaves for each finger
would not work anymore and the number of possible modes would be reduced
since the last octave is not complete. There are however two Dexmo devices,
one for each hand, and they controlled through two separate commands. Hence
it makes sense to consider them as two separate devices and therefore use dif-
ferent MIDI channels to differentiate between them. By using the channel and
the note to encode hand, finger and mode, there is the message’s velocity slot
left to pass further information about the mode, if needed.

In the project’s initial phase, two modes where considered: impulse and
guidance. The guidance mode should basically move the learner’s finger onto
the note, hold it there while the note is being played and remove it afterwards.
In impulse mode, the finger which should play the note is only moved part of the
way, telling the learner to use this finger to play the note. The impulse mode
stops automatically once the finger complies with the impulse, therefore map-
ping this mode to note-on and note-off events is straightforward: The note-on
event gives an impulse to press a note and a note-off event gives an impulse to
stop playing a note. The guidance mode however is a little more complex since
the guidance is held for a certain time, dependent on the note length for playing
a note and the finger’s speed for releasing a note, and should also be controlled
through a MIDI message. So guidance for playing a note as well as guidance for
stopping a note has a start and a finish, each requiring a note-on and note-off
event. Therefore the guidance mode is split into two modes, guidance inwards
and guidance outwards. This leads to three modes with the following key/note
mapping: (i) Note A for actuate stands for impulse mode, note-on being
impulse inwards and note-off impulse outwards. The velocity parameter in this
message is used to set the threshold (approximated in degrees) that is used to

9



register the compliance of finger and impulse. (ii) Note F for flex stands for
guidance mode inwards. Note-on meaning the guidance should start and
note-off stopping the guidance. Here the velocity parameter controls the speed
of the guidance. (iii) Note E for extend stands for guidance mode out-
wards and is configured the same as the guidance inwards mode in anything
but direction. The MIDI message structure is summarized in table 1.

Status Data Bytes Description
1000nnnn/ 0kkkkkkk 1000: Note Off event. Message sent when a
1001nnnn 0vvvvvvv note is released/ended. 1001: Note On event.

Message sent when a note is pressed/started.
nnnn = 0-15 MIDI Channel Number 1-16
Channel determines which hand is used.
kkkkkkk = the key (note) number: octave
determines finger, note in octave determines
mode. vvvvvvv = the velocity, here a parameter
depending on the mode.

Table 1: MIDI message structure for note events sent from the main application
to the Dexmo Client. Table modified from Summary of MIDI messages by
the MMA where the basic structure of the major MIDI message types can be
found [16].

4.4.2 Dexmo position as a MIDI message

In order to be able to use information from Dexmo in the main application,
for example to validate that the correct finger was used to play a note, the
information about Dexmo’s position needs to be communicated. Dexmo has
11 measured angles: Each of the five fingers is measured in bend and split
direction, where the bend angle measures how far the finger is bent towards
the palm of the hand and the split angle perpendicular to the bend angle in
the direction of the other fingers of the hand. The 11th angle is the thumb
rotation angle. There were two message types considered for this: control change
messages and system-exclusive messages. System-exclusive messages are custom
messages intended for device specific data. It would be easy to fit the intended
data into this message type, however this would be completely device-specific
and not in the sense of the generic approach which was one of the reasons
for choosing MIDI messages in the first place. Hence, control change events
where chosen. These require sending one message per angle, where the value
parameter encodes the angle (approximately) in degrees, i.e. Integers from 0
to 127. If higher precision is necessary, it would be possible to send a second
message for each angle containing for example decimal point encoding. Since
sending the full Dexmo position whenever there are little changes would be a
lot of information that would need to be processed by the main application,
messages are only sent when an angle changes by more than a predetermined

10



threshold and only for the angle that changed.
When using control change messages, there are some control change numbers

which are usually used for general purpose control changes and therefore should
be avoided for the Dexmo communication. Free consecutive control change num-
ber ranges are 20–30 and 52–62. For the same reasons as in the previous section
(section 4.4.1), different channels are used for the two hands. The following
mapping is used between angles and control change numbers:

• Thumb: rotate = 20; split = 21; bend= 22

• Index: split = 23; bend = 24

• Middle: split = 25; bend = 26

• Ring: split = 27; bend = 28

• Pinky: split = 29; bend = 30

A summary of the MIDI message structure can be found in table 2.

Status Data Bytes Description
1011nnnn 0ccccccc Control Change event. Message sent when a

0vvvvvvv controller value changes. nnnn = 0-15 MIDI
Channel Number 1-16 determines which hand
the data is from. ccccccc = control change
numbers determine which angle this message
contains. vvvvvvv = the value parameter
encodes the angle (approximately) in degrees.

Table 2: MIDI message structure for control change events sent from the Dexmo
Client. Table modified from Summary of MIDI messages by the MMA [16].

4.4.3 Implementation of the Dexmo Client

In each loop iteration of the Dexmo Client main loop, Dexmo’s position (i.e. the
values of the 11 measured angles of Dexmo) is updated if Dexmo sent updated
angle values to the client. The haptic feedback currently provided by Dexmo
is then checked based on the updated Dexmo position. If a new guidance or
impulse command was received, previous commands for the associated finger are
stopped, the current angle of the associated finger is saved and the force point
for the associated finger is computed either as the maximum of the range for
impulses or based on the set guidance speed for guidances. For ongoing impulses,
the system checks whether that impulse should stop because the associated
finger moved by at least the amount that was set for the threshold in the initial
command. If that is the case, the corresponding force is released, otherwise the
force remains unchanged. The force points for ongoing guidances are updated
based on the guidance speed that was set in the initial command, except if the

11



guidance target was reached, in this case the force will remain constant on the
guidance target. A guidance is stopped and the corresponding force released if
a MIDI message to stop the guidance was received. Next, the current Dexmo
position is checked against previously sent values. Sufficient changes in position
are sent as a MIDI message, whose structure is explained in section 4.4.2. The
MIDI messages sent to Dexmo are received in a callback outside of the main
loop. During processing of these messages, variables are set which are considered
when the Dexmo commands are computed in the main loop.

4.5 Communication between the system components

Figure 5: Diagram visualizing the system’s internal and external communication
through MIDI ports for the full lab setup including Dexmo and a MIDI-to-USB
interface to connect the Piano. Image slightly modified from a diagram supplied
by Guillaume Walck.

As mentioned before in section section 4.4, not only the system’s communi-
cation with the outside but also the internal communication is realized through
MIDI messages, which is visualized in figure 5. The practice tool receives user
input from the connected keyboard the user is practicing with on the RtMIDIIn
(user played note) port. The system sends MIDI messages to two MIDI ports:
The RtMIDIOut (play note) port of the practice tool sends messages which can
be interpreted by e.g. a synthesizer to play the current practise task, while
the RtMIDIOut (impulse) port of the practice tool sends messages through the
MIDI Through Port to the Dexmo Client which controls Dexmo to provide ap-

12



propriate feedback. The port on which the keyboard is connected as well as the
one to which the MIDI notes of the practice task are sent for synthesizing have
to be set in the initial screen of the practice tool, shown in figure 2. If the tool
is used in combination with the Dexmo Client, the main application’s Dexmo
output port, which sends the impulses to the Dexmo Client, has to be set to
the MIDI Through Port in the initial screen of the practice tool, also shown
in figure 2. If the tool is used with the alternative LEGO-Dexmo, the port
selection is not restricted at this point. For future extension, the Dexmo Client
sends out its position to a user selected port which is so far not considered by
the practice tool.

Figure 6: Diagram visualizing the system’s internal and external communication
through MIDI ports for a minimal setup with LEGO-Dexmo (optional). Image
slightly modified from a diagram supplied by Guillaume Walck.

A (minimal) example configuration, as shown in figure 6, using LEGO-
Dexmo (right hand) with a MIDI keyboard could be as follows: At first, the
Dexmo output port has to be chosen, i.e. ”Dexmo R MIDI”. The sound output
port is operated by the synthesizer Qsynth (running on the computer) and is
named ”Qsynth1”. This is used for the notes being played by the program itself.
The notes played on the keyboard are received on the piano input port, whose
name depends on the keyboard or interface that is connected. We use an Alesis
Q25 MIDI keyboard which sets up its own port named ”Q25”. For testing, a
virtual MIDI keyboard can also be used instead, for example VMPK. To play
back the keyboard notes while playing, it is necessary to hook up the keyboard

13



port into the synthesizer, e.g. with aconnect.
When haptic guidance via Dexmo is enabled, the corresponding MIDI mes-

sages are logged to /tmp/DexmoPiano/ for debugging purposes.

4.6 Error computation

To evaluate the user’s performance while and after playing, an error measure
is necessary. For the sake of testing and simplicity, a rather primitive one is
initially used and visualized: Within a task, the overall time (in milliseconds)
of any key being pressed is added up. The sum is then compared to the task’s
target sum, i.e. the overall time when some note should be played. The resulting
error value is simply their absolute difference in milliseconds.

Figure 7: Exemplary error visualization. The first 5 trials show the performance
progress of some task. Afterwards, a new task was generated (using the same
options) and practiced for three times.

Currently, the user’s error is displayed as a graph, showing the error value for
each trial of the same task. When a new task is generated with the same options,
the graph continues after a thick bar to highlight the change. Figure 7 shows
a visualization example for a few trials on two tasks with the same generation
options. When different options are used for a new task, the error graph will be
cleared.

4.7 Practise data storage

For each generated task, multiple files are created and needed apart from the
task’s MIDI file itself. These files are contained in a ”temporary” subdirectory
within the project folder, which is cleared regularly since most of those files are

14



not needed after the task is finished. MIDI files that were used for practicing are
copied to another (non-temporary) subdirectory next to the temporary one and
can therefore be reused. In such cases, an XML file is created which contains
task-specific information, mainly generation settings, the list of notes to be
played and a timestamp (also used as a unique identifier).

Every time the user practices a certain task, information about that trial is
written to the respective XML file. This includes a timestamp, the notes that
were actually played, the guidance mode and the computed error value(s).

5 Results

The goal of the project, a working prototype of the piano learning program with
haptic feedback from Dexmo, was achieved. It is currently possible to generate
pieces of music for both or one of the two hands, which the user can practice.
One can choose how many bars, how many notes at most in each bar, which
pitches and which note lengths the music piece should contain. There is also a
possibility to load saved MIDI files.

To improve the task, one can practice it and the evaluated error is displayed
for each trial. However, it is also possible to have the piece played as a demo
with haptic feedback to get to know it. The metronome, which gives the user
the rhythm and thus the timing, runs during both runs, but can also be switched
off.

The finger numbers with which the note should be played are also displayed
in the note sheet and the respective finger is haptically addressed by Dexmo.
The display of finger numbers is not possible in cases where less than seven
notes are generated for one hand, but guidance can still be provided in those
cases.

On the error diagram, the user can see his learning progress of a repeatedly
practiced music piece. If the difficulty of the next piece remains the same (same
number of bars, number of notes maximum in each bar, same pitches and note
lengths), the error values are still displayed in the same diagram. If the difficulty
of the task changes, the diagram is reset.

The errors, user settings, played notes for each attempt and MIDI files are
also stored, allowing the user to go back to one of the last practiced tasks and
play it again.

6 Discussion and further development

There are some areas of the project that can be improved. The probably most
important extension is a differentiated error evaluation of the played task. The
error calculated so far serves mostly as a prototype, since only the lengths of the
notes are compared, independent of pitch, timing and other factors. Therefore,
the calculation of differentiated error types such as timing, duration, amount
of notes, note pitch, loudness, velocity and others could be incorporated in the

15



future. Furthermore the position of Dexmo could be useful for determining
errors in the fingering of the pieces. So far the Dexmo Client provides its
position, however this is not used in the main application.

Once different error types are created, the generation of the next task could
be adapted to them. For example the tempo of the next task could be reduced
if the timing error is high etc. The guidance could also be adapted to the error
and a machine learning component could be used to select the best possible
guidance and task for a specific user.

The guidance could also be revised further. Instead of the current inwards
guidance when a note starts and the outwards impulse when a note ends, an
inwards impulse could also be added that stops as soon as the user moves his
finger in order to avoid excessive guidance. One could also start the guidance of
the movement towards the note just before the actual note, so that the note is
played for the entire duration without delay. Also, the guidance could raise the
finger slightly before lowering it to the piano to make the movement more natural
and announce it better. Another variable which could be varied is the strength
of the guidance. However, these adjustments to the guidance would need to be
evaluated regarding their effectiveness because Adams et al. were able to show
that feedback as hint is better for learning than real finger movement, because
fine finger movements etc. are the most difficult to transfer with a robot [6]. If
many different modes where implemented in the tool, it could also be used to
evaluate which type of feedback is the most effective and useful for the user.

The selection of pitches could also be adjusted, so that only notes suitable for
certain musical styles (e.g. blues) are created in a generated piece of music. This
could be useful to get a reasonable sound despite randomly generated notes.

Another development could be to show the user in the GUI at which note
they are in the actual task. Visual feedback in the GUI could also supplement
the haptic feedback on Dexmo, as our literature research has shown that this
combination is far more useful than haptic feedback alone.

An additional training mode could also be introduced to wait until the cor-
rect note is played before continuing the exercise. This could help beginners to
get used to a task and ease the initial difficulty.

Even though all data (the MIDI file, the user settings, the played notes and
the error) is stored in an XML file, this file is not read when the task is repeated
by the user. This feature could be added to show the user his previous error
and to give him an incentive for improvement.

It could also be considered to integrate the project into an existing program
in which a live display of the task or of the current note may already exist, for
example in open source programs like PianoBooster [17], which however was
written in C++ and therefore is currently not compatible.

16



References

[1] dextarobotics. https://origin.dextarobotics.com/en-us/. [Online;
accessed September-2020].

[2] https://www.youtube.com/watch?v=Sif7cY8qwjM. [Online; accessed
September-2020].

[3] flowkey GmbH. https://www.flowkey.com/en. [Online; accessed
September-2020].

[4] OnlinePianist. https://www.onlinepianist.com/. [Online; accessed
September-2020].

[5] K. Ann Renninger and Alexandra List. Scaffolding for Learning, pages
2922–2926. Springer US, Boston, MA, 2012.

[6] Richard J Adams, Daniel Klowden, and Blake Hannaford. Virtual training
for a manual assembly task. Haptics-e, The electronic journal of haptics
research, 2001.

[7] Gabriele Wulf, Charles H Shea, and Sabine Matschiner. Frequent feed-
back enhances complex motor skill learning. Journal of motor behavior,
30(2):180–192, 1998.

[8] Amaya Becvar Weddle and James D Hollan. Professional perception and
expert action: Scaffolding embodied practices in professional education.
Mind, Culture, and Activity, 17(2):119–148, 2010.

[9] Dan Morris, Hong Tan, Federico Barbagli, Timothy Chang, and Kenneth
Salisbury. Haptic feedback enhances force skill learning. In Second Joint
EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems (WHC’07), pages 21–26. IEEE,
2007.

[10] David Feygin, Madeleine Keehner, and R Tendick. Haptic guidance: Ex-
perimental evaluation of a haptic training method for a perceptual motor
skill. In Proceedings 10th Symposium on Haptic Interfaces for Virtual En-
vironment and Teleoperator Systems. HAPTICS 2002, pages 40–47. IEEE,
2002.

[11] Marie-Hélène Milot, Laura Marchal-Crespo, Christopher S Green, Steven C
Cramer, and David J Reinkensmeyer. Comparison of error-amplification
and haptic-guidance training techniques for learning of a timing-based mo-
tor task by healthy individuals. Experimental brain research, 201(2):119–
131, 2010.

[12] Graham Grindlay. Haptic guidance benefits musical motor learning. In 2008
Symposium on Haptic Interfaces for Virtual Environment and Teleoperator
Systems, pages 397–404. IEEE, 2008.

17

https://origin.dextarobotics.com/en-us/
https://www.youtube.com/watch?v=Sif7cY8qwjM
https://www.flowkey.com/en
https://www.onlinepianist.com/


[13] Laura Marchal Crespo and David J Reinkensmeyer. Haptic guidance can
enhance motor learning of a steering task. Journal of motor behavior,
40(6):545–557, 2008.

[14] http://lilypond.org/index.html. [Online; accessed August-2020].

[15] Marco Musy. https://github.com/marcomusy/pianoplayer. [Online;
accessed August-2020].

[16] https://www.midi.org/specifications-old/item/

table-1-summary-of-midi-message. [Online; accessed September-
2020].

[17] https://github.com/captnfab/PianoBooster. [Online; accessed
September-2020].

18

http://lilypond.org/index.html
https://github.com/marcomusy/pianoplayer
https://www.midi.org/specifications-old/item/table-1-summary-of-midi-message
https://www.midi.org/specifications-old/item/table-1-summary-of-midi-message
https://github.com/captnfab/PianoBooster

	Abstract
	Introduction
	Related work
	Method
	Graphical User Interface (GUI)
	MIDI Generator
	Finding Fingerings
	Dexmo Client Interface
	MIDI message commands for Dexmo
	Dexmo position as a MIDI message
	Implementation of the Dexmo Client

	Communication between the system components
	Error computation
	Practise data storage

	Results
	Discussion and further development

