
I N T E L L I G E N T  A G E N T S

MARCH/APRIL 1999 1094-7167/99/$10.00 © 1999 IEEE 45

Agent Communication
Languages: The Current
Landscape
Yannis Labrou, Tim Finin, and Yun Peng, University of Maryland, Baltimore County

ALTHOUGH THE FIRST PRIMATES
that could be considered our remote ancestors
appeared one to two million years ago, it has
been less than 50,000 years since our species
“invented” what we would recognize today as
a language. In the short evolutionary time
since that innovation, we have managed to
raise ourselves to a level unmatched by other
creatures on our planet. Admittedly, the attri-
bution of this dramatic advancement solely to
language cannot be proven, but language must
have something to do with it. Is it a mere coin-
cidence that the emergence of language coin-
cides with the beginning of complex, long-
lived communities? Obviously, language
fostered complex interactions between the
members of a community. And beyond facil-

itating day-to-day business, language granted
memory. It allowed communities to convey
the experiences and acquired knowledge of its
members to the next generation.

Not all languages are spoken “natural lan-
guages” like English, Greek, or Mandarin
Chinese. The signs that baseball managers,
coaches, and players use and sign language
for the deaf are examples of languages that
exhibit a fundamental property of useful lan-
guages: the meanings of their tokens are
shared. This is not to say that one cannot have
a private language, whose symbols are under-
stood only by oneself; however, there is not
much you can do with such a language. If this
private language becomes public, well, now
we’re talking. This leads us to a fundamen-
tal characteristic of any language: languages
exist to serve a purpose, namely the com-
munication between willing—and occasion-
ally unwilling—participants.

Whereas evolution was the engine of lan-

guage development for human agents, stan-
dardization efforts have assumed that role for
software agents. Agents1,2—by which we
always mean software agents in this article—
suggest a paradigm for software development
that emphasizes autonomy both at design time
and runtime, adaptivity, and cooperation. This
approach seems appealing in a world of dis-
tributed, heterogeneous systems. Languages
for communicating agents promise to play the
role that natural languages played for their
human counterparts. An agent communica-
tion language that allows agents to interact
while hiding the details of their internal work-
ings will result in agent communities that
tackle problems no individual agent could. 

In this article, we introduce some concepts
useful in discussing agent communication
languages and then compare and evaluate the
two major ACLs. (Throughout the article, we
use the abbreviation ACL to refer both to an
agent communication language as a concept

DESPITE THE SUBSTANTIAL NUMBER OF MULTIAGENT

SYSTEMS THAT USE AN AGENT COMMUNICATION LANGUAGE,
THE DUST HAS NOT YET SETTLED OVER THE ACL

LANDSCAPE. ALTHOUGH SEMANTIC SPECIFICATION ISSUES

HAVE MONOPOLIZED THE DEBATE, OTHER IMPORTANT

PRAGMATIC ISSUES MUST BE RESOLVED QUICKLY IF ACLS ARE

TO SUPPORT THE DEVELOPMENT OF ROBUST AGENT SYSTEMS. 

The most noble and profitable inven-
tion of all other was that of speech,
consisting of names or appellation, and
their connection; whereby men register
their thoughts, recall them when they
are past, and also declare them one to
another for mutual utility and conver-
sation; without which there had been
amongst men neither commonwealth,
nor society, nor contract, nor peace, no
more than amongst lions, bears, and
wolves.

—Thomas Hobbes
Leviathan,Part I, Chapter IV



and to ACLs collectively. There is an ACL
simply named ACL, but we hope that context
will prevent confusion.) Knowledge Query
and Manipulation Language is our vehicle for
introducing the fundamental notions of an
ACL. The semantics of KQML have been the
single most important issue in the debate over
ACLs, and we include a brief overview of the
arguments. The second ACL we discuss is
FIPA ACL. This is the language developed by
the Foundation for Intelligent Physical
Agents, the first organized effort focusing on
developing standards in the broader area of
agents. In our comparative evaluation of
KQML and FIPA ACL, we look beyond the
dominant issue of semantics and point to the
practical limitations that these ACLs share.
As we show with reference to a few of the
systems that have used ACLs, these practical
problems are the central areas of immediate
concern and future work for the ACL stan-
dardization effort.

Basic concepts of ACL

An ACL provides agents with a means of
exchanging information and knowledge;
Michael R. Genesereth has gone as far to
equate agency with the ability of a system to
exchange knowledge using an ACL.3 Of
course, other means have been used to
achieve the lofty goal of seamless exchange
of information and knowledge between appli-
cations. From remote procedure call and
remote method invocation (RPC and RMI) to
CORBA and object request brokers, the goal
has been the same. What distinguishes ACLs
from such past efforts are the objects of dis-
course and their semantic complexity. ACLs
stand a level above CORBA for two reasons:

• ACLs handle propositions, rules, and
actions instead of simple objects with no
semantics associated with them. 

• An ACL message describes a desired
state in a declarative language, rather than
a procedure or method. 

But ACLs by no means cover the entire
spectrum of what applications might want to
exchange. Agents can and should exchange
more complex objects, such as shared plans
and goals, or even shared experiences and
long-term strategies.

At the technical level, when using an ACL,
agents transport messages over the network
using a lower-level protocol—for example,

SMTP, TCP/IP, IIOP, or HTTP. The ACL
itself defines the types of messages (and their
meanings) that agents can exchange. Agents
do not, however, just engage in single-mes-
sage exchanges; they have conversations—
task-oriented, shared sequences of messages
that they follow, such as a negotiation or an
auction. At the same time, a higher-level con-
ceptualization of the agent’s strategies and
behaviors drives the agent’s communicative
(and noncommunicative) behavior.

Traditionally, we understand the message
types of ACLs as speech acts, which in turn
we usually describe and define in terms of
beliefs, desires, intentions, and similar modal-
ities. This kind of intentional-level description
can be just a useful way to view a system, or
it can have a concrete computational aspect.
The second case describes a large range of
BDI agents—belief, desire, and intention
agents—that have some implicit or explicit
representation of the corresponding modali-
ties. This representation is built on top of a
substrate that describes the conceptual model
of the agent’s knowledge, goals, and commit-
ments, commonly known as a BDI theory. 

BDI theories and agents have faced criti-
cisms over the number and choice of modali-
ties and over the fact that multimodal BDI log-
ics do not have complete axiomatizations and
are not efficiently computable. Nonetheless,
they offer an appealing framework to account
for agent communications: when communi-
cating, agents communicate their BDI states or
attempt to alter their interlocutors’BDI states.

The origin of ACLs

The Knowledge Sharing Effort,4,5initiated
circa 1990 by the Defense Advanced
Research Projects Agency of the US Depart-
ment of Defense, enjoyed the participation
of dozens of researchers from both academia
and industry. Its goal was to develop tech-
niques, methodologies, and software tools
for knowledge sharing and reuse at design,
implementation, or execution time. The cen-
tral concept of the KSE was that knowledge
sharing requires communication, which in
turn requires a common language; the effort
focused on defining that common language.
In the KSE model, software systems are vir-
tual knowledge bases that exchange propo-
sitions using a language that expresses vari-
ous complex attitudes. The proper term is
propositional attitudes. Propositional atti-
tudes are three-part relationships between

• an agent,
• a content-bearing proposition (for exam-

ple, it is raining), and 
• a finite set of propositional attitudes an

agent might have with respect to the
proposition (for example, believing,
asserting, fearing, wondering, hoping,
and so on).

For example, <a,fear,raining(tnow)> is a
propositional attitude.

Although agents were not originally part of
the KSE vocabulary, the group’s conceptual
breakdown of the common-language problem
is applicable to what we currently refer to as
agents. Expressions in a given agent’s native
language should be understood by some other
agent that uses a different implementation lan-
guage and domain assumptions. 

So, according to the KSE, the first layer of
the common-language problem is that of syn-
tactic translation between languages in the
same family or between families of lan-
guages. The Object Management Group
(OMG) standardization effort is an example
of work in this direction within the object-
oriented language family.

Another layer is concerned with guaran-
teeing that tokens’ semantic content is pre-
served among applications. In other words,
the same concept, object, or entity must have
a uniform meaning across applications even
if different applications use different names
to refer to it. Every agent incorporates some
view of the domain (and the domain knowl-
edge) it applies to. The technical term for this
body of background knowledge is ontology.
More formally, an ontology is a particular con-
ceptualization of a set of objects, concepts,
and other entities about which knowledge is
expressed, and of the relationships among
them. An ontology consists of terms, their def-
initions, and axioms relating to them;6 terms
are normally organized in a taxonomy.

A final layer addresses the communication
between agents. This is not about transport-
ing bits and bytes between agents; agents
should be able to communicate complex atti-
tudes about their information and knowledge
content. Agents need to question other agents,
inform them, request their services for a task,
find other agents who can assist them, moni-
tor values and objects, and so on. In an open
environment, a simple RPC cannot provide
these functions. Agents issue requests by spec-
ifying not a procedure but a desired state in a
declarative language—that is, in some ACL.

The KSE view was that these layers are

46 IEEE INTELLIGENT SYSTEMS



independent of one another. The ACL is only
concerned with capturing propositional atti-
tudes regardless of how propositions are
expressed. Still, propositions are what agents
will be “talking” about. 

A proposal within the KSE was to use
Knowledge Interchange Format (KIF),7 a par-
ticular logic language, as a standard for des-
cribing things within computer systems such
as expert systems, databases, intelligent
agents, and so on. Moreover, KSE researchers
designed KIF specifically to make it useful
as an interlingua. By this, we mean a lan-
guage that is useful as a mediator in the trans-
lation of other languages. KIF is a prefix ver-
sion of first-order predicate-order calculus
with extensions to support meta-operators
and definitions. The language description
includes both a specification for its syntax and
one for its semantics.

Ontolingua,8 a language designed for des-
cribing ontologies, and a variety of support-
ing tools became the KSE solution to the
problem of developing and maintaining on-
tologies. Researchers at Stanford’s Knowl-
edge Systems Laboratory have developed a
set of tools and services to support the pro-
cess of geographically distributed groups
achieving consensus on common shared
ontologies. These tools, built around Ontolin-
gua, use the World Wide Web to enable wide
access and let users publish, browse, create,
and edit ontologies stored on an ontology
server. Users can quickly assemble a new
ontology from a library of existing modules,
extend the result with new definitions and
constraints, check for logical consistency,
and publish the result in the library.

KQML: concepts of ACLs

Existing ACLs are KQML, its many dialects
and variants, and FIPA ACL. KQML9–10illus-
trates the basic concepts of all these. With the
exception of ACL, a KQML variant that as-
sumes KIF as the content language, all KQML
dialects and FIPA ACL follow the basic con-
cepts of KQML that we discuss here. 

KQML is a high-level, message-oriented
communication language and protocol for
information exchange independent of content
syntax and applicable ontology. Thus, KQML
is independent of the transport mechanism
(TCP/IP, SMTP, IIOP, or another), indepen-
dent of the content language (KIF, SQL,
STEP, Prolog, or another), and independent
of the ontology assumed by the content.

Three-layer organization.Conceptually, we
can identify three layers in a KQML message:
content, communication, and message. The
content layer bears the actual content of the
message in the program’s own representation
language. KQML can carry any representa-
tion language, including languages expressed
as ASCII strings and those expressed using
binary notation. Every KQML implementa-
tion ignores the content portion of the mes-
sage, except to determine where it ends. 

The communication layer encodes a set of
features to the message that describe the
lower-level communication parameters, such
as the identity of the sender and recipient,
and a unique identifier associated with the
communication. 

The message layer, which encodes a mes-
sage that one application would like to trans-
mit to another, is the core of KQML. This layer
determines the kinds of interactions one can
have with a KQML-speaking agent. The mes-
sage layer’s primary function is to identify the
network protocol with which to deliver the
message and to supply a speech act or perfor-
mativethat the sender attaches to the content.
This speech act indicates whether the message
is an assertion, a query, a command, or any
other of a set of known performatives. (KQML
has adopted the term performativeto mean any
of its primitive message types. In speech act
theory, a performative is an utterance that suc-
ceeds simply because the speaker says or
asserts it. In English, such utterances typically
appear in a first-person, present-tense, declar-
ative form, often accompanied by “hereby”—
for example, “I hereby request you to turn on
the computer.” Philip R. Cohen has argued11

that performativeis a poor term to use for all
ACL primitive message types, because not all
can be construed as actions that the sender can

make so just by sending them. For historical
reasons, however, we continue to use the term
for KQML.) 

In addition, since the content is opaque to
KQML, the message layer also includes
optional features that describe the content
language, the ontology it assumes, and some
type of description of the content, such as a
descriptor naming a topic within the ontol-
ogy. These features make it possible for
KQML implementations to analyze, route,
and properly deliver messages whose con-
tent is inaccessible.

Syntax and performatives.The syntax of
KQML is based on the familiar s-expression
used in Lisp—that is, a balanced parenthe-
sis list. The initial element of the list is the
performative; the remaining elements are the
performative’s arguments as keyword/value
pairs. Because the language is relatively sim-
ple, the actual syntax is not significant and
can be changed if necessary in the future. The
syntax reveals the roots of the initial imple-
mentations, which were done in Common
Lisp; it has turned out to be quite flexible. 

A KQML message from agent joe repre-
senting a query about the price of a share of
IBM stock might be encoded as shown in
Figure 1a. In this message, the KQML per-
formative is ask-one, the content is (PRICE

IBM ?price), the ontology assumed by the
query is identified by the token NYSE-TICKS,
the receiver of the message is to be a server
identified as stock-server, and the query
is written in a language called LPROLOG. The
value of the :content keyword is the con-
tent level; the values of the :reply-with,

:sender, and :receiver keywords form
the communication layer; and the performa-
tive name with the :language and :ontol-
ogy keywords form the message layer. In
due time, the stock-server might send joe the
KQML message in Figure 1b.

Although KQML has a predefined set of
reserved performatives, it is neither a mini-
mal required set nor a closed one. A KQML
agent might choose to handle only a few (per-
haps one or two) performatives. The set is
extensible; a community of agents might
choose to use additional performatives if they
agree on their interpretation and the protocol
associated with each. However, an imple-
mentation that chooses to implement one of
the reserved performatives must implement
it in the standard way.

One of the design criteria for KQML was to
produce a language that could support a wide

MARCH/APRIL 1999 47

Figure 1. Examples of messages in KQML: (a) a query
from agent joe about the price of IBM stock and (b) the
stock-server’s reply.

(ask-one 

:sender joe

:content (PRICE IBM ?price) 

:receiver stock-server 

:reply-with ibm-stock 

:language LPROLOG 

:ontology NYSE-TICKS)

(a)

(tell 

:sender stock-server 

:content (PRICE IBM 14) 

:receiver joe 

:in-reply-to ibm-stock 

:language LPROLOG 

:ontology NYSE-TICKS)

(b)



variety of interesting agent archi-
tectures. Thus, KQML introduces a
small number of KQML performa-
tives that agents use to describe the
metadata specifying the informa-
tion requirements and capabilities;
it also introduces a special class of
agents called communication facil-
itators.3A facilitator is an agent that
performs various useful communication ser-
vices, such as maintaining a registry of ser-
vice names, forwarding messages to named
services, routing messages based on content,
matchmaking between information providers
and clients, and providing mediation and
translation services.

Semantics. During its first few years of use,
KQML existed with only an informal and
partial semantic description. Critics identi-
fied this as one of its shortcomings.11 Dur-
ing the past few years, researchers have put
forth several efforts to provide a formal
semantics.

In other works,12–14the first two authors
of this article provide the semantics of
KQML in terms of preconditions, postcon-
ditions,and completion conditionsfor each
performative. Assuming a sender A and a
receiver B, preconditions indicate the neces-
sary states for an agent to send a performa-
tive,Pre(A), and for the receiver to accept it
and successfully process it,Pre(B). If the
preconditions do not hold, the most likely
response is error or sorry. 

Postconditions describe the states of the
sender after the successful utterance of a per-
formative, and of the receiver after the receipt
and processing of a message but before a
counterutterance. Postconditions Post(A)
and Post(B)hold unless a sorry or an error
is sent as a response to report the unsuccess-
ful processing of the message. 

A completion condition for the performa-
tive, Completion, indicates the final state,
after, for example, a conversation has taken
place and the intention associated with the
performative that started the conversation has
been fulfilled.

Establishing the preconditions for a per-
formative does not guarantee its successful
execution and performance. The preconditions
only indicate what can be assumed to be the
state of the interlocutors involved in an
exchange. Similarly, the postconditions des-
cribe the states of the interlocutors assuming
the successful performance of the communi-
cation primitive. Preconditions, postcondi-

tions, and completion conditions describe
states of agents in a language of mental atti-
tudes (belief, knowledge, desire, and inten-
tion) and action descriptors (for sending and
processing a message). No semantic models
for the mental attitudes are provided, but the
language used to describe agents’ states
severely restricts the ways the mental attitudes
can be combined to compose agents’ states.

Figure 2 shows an example of semantics
for sender A and receiver B in this frame-
work. This semantics for tell suggests that an
agent cannot offer unsolicited information to
another agent. We can easily amend this by
introducing another performative—let’s call
it proactive-tell—that has the same seman-
tic description as tell but with Pre(A) being
BEL(A,X), and an empty Pre(B).

Another semantic approach11,15builds on
earlier work on defining rational agency.16

This body of work deems the term perfor-
mativeinappropriate to describe KQML’s
communication primitives; the suggested
approach views the language’s reserved
message types as attemptsat communica-
tion. These attempts involve two or more
rational agents that temporarily form teams
to engage in communication. This approach
strongly links the ACL semantics to the
agent theory assumed for the agents involved
in an ACL exchange.

Foundation for Intelligent
Physical Agents 

The Foundation for Intelligent Physical
Agents is a nonprofit association whose pur-
pose is to promote the success of emerging
agent-based applications, services, and equip-
ment. FIPA’s goal is to make available spec-
ifications that maximize interoperability
across agent-based systems. As this des-
cription suggests, FIPA is a standards orga-
nization in the area of software agents. The
organization originally included the word
physicalin its name to cover agents of the
robotic variety. Over time, however, the adjec-
tive’s presence has come to serve as a

reminder that physical—that is,
human—agents and interaction
with them are part of the associa-
tion’s scope.
FIPA operates through the open
international collaboration of
member organizations, which are
companies and universities active
in the field. European and Far

Eastern technology companies have been
among the earliest and most active partici-
pants, including Alcatel, British Telecom,
France Telecom, Deutsche Telecom,
Hitatchi, NEC, NHK, NTT, Nortel, Siemens,
and Telia.

FIPA’s operations center around annual
rounds of specification deliverables. The cur-
rent specification is FIPA97, available at the
FIPA home page,www.fipa.org. FIPA assigns
tasks to technical committees, each of which
has primary responsibility for producing,
maintaining, and updating the specifications
applicable to its tasks. The technical commit-
tee most important within the scope of this
article is the one charged with producing a
specification for an ACL. In addition, the
agent management committee covers agent
services such as facilitation, registration, and
agent platforms; the agent/software interac-
tion committee covers integration of agents
with legacy software applications. Together,
these three committees create the backbone
of the FIPA specifications.

FIPA ACL. FIPA’s agent communication
language, like KQML, is based on speech act
theory: messages are actions or communica-
tive acts, as they are intended to perform
some action by virtue of being sent. The
FIPA ACL specification consists of a set of
message types and the description of their
pragmatics—that is, the effects on the men-
tal attitudes of the sender and receiver agents.
The specification describes every commu-
nicative act with both a narrative form and a
formal semantics based on modal logic. It
also provides the normative description of a
set of high-level interaction protocols, in-
cluding requesting an action, contract net,
and several kinds of auctions.

FIPA ACL is superficially similar to
KQML. Its syntax is identical to KQML’s
except for different names for some reserved
primitives. Thus, it maintains the KQML
approach of separating the outer language
from the inner language. The outer language
defines the intended meaning of the message;
the inner, or content, language denotes the

48 IEEE INTELLIGENT SYSTEMS

Figure 2. KQML semantics for tell.

tell(A,B,X)
Pre(A): BEL(A,X) ∧ KNOW(A,WANT(B,KNOW(B,S)))
Pre(B): INT(B,KNOW(B,S))
where S may be any of BEL(B,X), or ¬ (BEL(B,X)).

Post(A): KNOW(A,KNOW(B,BEL(A,X)))
Post(B): KNOW(B,BEL(A,X))

Completion: KNOW(B,BEL(A,X))



expression to which the interlocutors’beliefs,
desires, and intentions, as described by the
meaning of the communication primitive,
apply. 

KQML has been criticized for using the
term performativeto refer to communication
primitives. In FIPA ACL, the communication
primitives are called communicative acts,or
CAs for short. Despite the difference in nam-
ing, KQML performatives and FIPA ACL
communicative acts are the same kind of
entity. To avoid confusion, we will use the
terms performative, (communication) primi-
tive, and communicative actinterchangeably. 

The FIPA ACL specification document
claims that FIPA ACL (like KQML) does not
make any commitment to a particular con-
tent language. This claim holds true for most
primitives. However, to understand and
process some FIPA ACL primitives, receiv-
ing agents must have some understanding of
Semantic Language, or SL. We will discuss
this important point later.

Semantics.SL is the formal language used to
define FIPA ACL’s semantics. SL is a quan-
tified, multimodal logic with modal opera-
tors for beliefs (B), desires (D), uncertain
beliefs (U), and intentions (persistent goals,
PG). SL can represent propositions, objects,
and actions. We can trace SL’s origins to the
work of Philip Cohen and Hector Leves-
que,16but its current form is primarily based
on the work of M.D. Sadek.17 A detailed
description of SL, including its own seman-
tics, is outside the scope of this article and
can be found in the FIPA ACL specification.

In FIPA ACL, the semantics of each com-
municative act is specified as sets of SL for-
mulae that describe the act’s feasibility pre-
conditionsand its rational effect. For a given
CA a, the feasibility preconditions FP(a)
describe the necessary conditions for the
sender of the CA. That is, for an agent to
properly perform the communicative act a
by sending a particular message, the feasi-
bility preconditions must hold for the sender.
The agent is not obliged to perform a if FP(a)
holds, but it can if it chooses. A communica-
tive act’s rational effectrepresents the effect
that an agent can expect to occur as a result
of performing the action; it also typically
specifies conditions that should hold true of
the recipient. The receiving agent is not re-
quired to ensure that the expected effect
comes about and might indeed find it impos-
sible. Thus, an agent can use its knowledge
of the rational effect to plan what CA to per-

form, but it cannot assume that the rational
effect will necessarily follow. 

Conformance with the FIPA ACL means
that when agent A sends CA x, the FP(x) for
A must hold. The unguaranteed RE(x) is irrel-
evant to the conformance issue.

This introduction should be enough for a
basic understanding of the example in Fig-
ure 3, which shows the specification of the
communicative act inform, in which agent i
informs agent j of content φ. The content of
inform is a proposition, and its meaning is
that the sender informs the receiver that a
given proposition is true. According to this
semantics, the sending agent

• holds that the proposition is true (Bi(φ));
• does not already believe that the receiver

has any knowledge of the truth of the
proposition (¬ Bi(Bifj(φ) ∨ Uifj(φ)); and

• intends that the receiving agent should
also come to believe that the proposition
is true (rational effect Bj(φ));

Comparing the ACLs 

KQML and FIPA ACL are almost identi-
cal with respect to their basic concepts and
the principles they observe. The two lan-
guages differ primarily in the details of their
semantic frameworks. In one sense, this dif-
ference is substantial: because of the differ-
ent semantic frameworks it would be impos-
sible to come up with exact mappings or
transformations between KQML performa-
tives and their completely equivalent FIPA
primitives, or vice versa. On the other hand,
the ineluctable differences might be of little
importance to many agents’programmers, if
their agents are not true BDI agents. We will
elaborate on this argument in the later sec-
tion on the future of ACLs.

Both languages assume a basic noncom-
mitment to a reserved content language.
However, in the FIPA ACL case, as we men-
tioned, an agent must have some limited
understanding of SL to properly process a
received message (as in the case of the request
CA). The two languages have the same syn-
tax. That is, a KQML message and a FIPA
ACL message look syntactically identical—
except, of course, in their different names for

communication primitives. This is an impor-
tant attribute of FIPA ACL. FIPA changed the
language’s original, Prolog-like syntax to
match KQML’s to facilitate the transition of
KQML systems to FIPA ACL. A large part of
making an agent system communication-
ready is to provide code that will parse incom-
ing messages, compose messages for trans-
port, and channel them through the network
using a lower-level network protocol. This
infrastructure will be the same regardless of
the choice of ACL.

These encouraging thoughts do not apply
to the semantics of the two languages. Fol-
lowing the KQML semantics described else-
where,12we can see that semantically the two
languages differ at the level of what consti-
tutes the semantic description: preconditions,
postconditions, and completion conditions
for KQML; feasibility preconditions and
rational effect for FIPA ACL. They also dif-
fer at the level of the choice and definitions
of the modalities they employ (the language
used to describe agents’states). Although we
can approximate the KQML primitives in
FIPA’s framework and vice versa, a complete
and accurate translation is not, in general,
possible. For example, to define a CA in
FIPA ACL that approximates KQML’s tell,
we can replace φ in the definition of inform
with Biφ(see Figure 3). 

Another difference between the two ACLs
is in their treatment of the registration and
facilitation primitives. These primitives cover
a range of important pragmatic issues, such as
registering, updating registration information,
and finding other agents that can be of assis-
tance in processing requests. In KQML, these
tasks are associated with performatives that
the language treats as first-class objects. FIPA
ACL, intended to be a purer ACL, does not
consider these tasks CAs in their own right.
Instead, it treats them as requests for action
and defines a range of reserved actions that
cover the registration and life-cycle tasks. In
this approach, the reserved actions do not have
formally defined specifications or semantics
and are defined in terms of natural-language
descriptions. Moreover, FIPA ACL does not
currently provide facilitation primitives. 

Many ACL users have expressed their desire
that FIPA ACL include the facilitation prim-
itives that they are accustomed to from
KQML—broker, recommend,and recruit.
Such user requests serve as a sobering reminder
that to be practical, an ACL requires a careful
mix of the theoretical and the pragmatic. 

The emergence of FIPA ACL might be an

MARCH/APRIL 1999 49

Figure 3. FIPA ACL semantics for the communicative act
inform. Agent i informs agent j of content φ.

<i, inform(j, φ)>
FP: Bi(φ) ∧ ¬ Bi(Bifj(φ) ∨ Uifj(φ))
RE: Bj(φ)



additional headache for implementers who
must decide for themselves which one of the
two ACLs to use. Our comments on the subject
are bound to cause more headaches. Any sys-
tem that is to use KQML (or FIPA ACL, for
that matter) must provide the following things:

1. a suite of APIs that facilitate the com-
position, sending, and receiving of ACL
messages;

2. an infrastructure of services that assist
agents with naming, registration, and
basic facilitation services (finding other
agents that can do things for your agent);
and

3. code for every reserved message type
(performative or communicative act)
that takes the action(s) prescribed by the
semantics for the particular application;
this code depends on the application lan-
guage, the domain, and the details of the
agent system using the ACL.

Ideally, a programmer should only have to
provide item 3. Items 1 and 2 should be re-
usable components that the programmer inte-
grates into the application code. Actually, the
programmer should not even have to inte-
grate the things listed under item 2; they
ought to exist as a continuous running ser-
vice available to any new agent. But the sad
truth is that these services have not been the
focus of ACL standardization efforts. No ser-
vice exists through which one can register an
agent by just sending a registration message.
The disagreement over such services has
resulted, in part, in a multitude of APIs. (The
other reasons for the multitude of APIs are
the minor syntactic differences between the
various varieties of KQML and the different
naming schemes employed by the various
KQML-speaking agent systems.) 

Every multiagent system that uses an ACL
has a homegrown implementation of these
APIs—there are more than a handful of APIs
written in Java, for Java agents—and its own
infrastructure of basic services. Providing the
code that processes the primitives is more of
an art than a science. Existing semantic ap-
proaches rely on multimodal logics that are
often noncomputable or have no efficient im-
plementation. The process of grounding the
theory into code would result in a system that
differs substantially—and probably unpre-
dictably—from the theory on paper. To make
matters worse, if the code does not implement
the modalities assumed by the semantics, the
programmer will most likely follow his or her

intuitive understanding of the semantics of the
communication primitives. 

In theory, the similarity in basic assump-
tions and syntax among existing ACLs means
that only item 3 from our list of requirements
should change according to the choice of
ACL. Even then, much to the dismay of those
defining ACL semantics, the implementers’
intuitive understanding of the primitives
might prevail over the concise semantic
definitions. So, unless an agent implements
modalities (such as belief, desire, intention,
and so on) following the particular agent the-
ory that the semantic account suggests, the
decision of which language to use should be
based on pragmatic concerns.

ACL-supporting systems and
applications

Over the past few years, we have seen the
emergence of a multitude of applications and
systems built around ACLs. Instead of pro-
viding a compendium of such systems, we
focus here on a few whose features and char-
acteristics exemplify current approaches and
trends. Each of the systems we discuss falls
into one of two categories:

• applications, that is, multiagent systems
that use an ACL for interagent communi-
cation, or

• APIs that facilitate the incorporation of
ACL-speaking capabilities into an appli-
cation.

Since the ACL itself is an abstraction—a
collection of communication primitives
deemed useful for higher-level communica-
tion between agents—there is no such thing
as an “implementation” of an ACL.

All the systems we mention here use some
variant of KQML as their ACL. As of the
spring of 1998, there were no published,
deployed systems claiming to use FIPA ACL. 

Infosleuth18,19 is a project by MCC that
emphasizes the semantic integration of het-
erogeneous information in an open dynamic
environment. The communicating agents,
primarily written in Java, make use of an
infrastructure of basic services (agents) for
authentication, brokering, monitoring, and
visualization of the agents’ interaction. An
integral part of the architecture is the ontol-
ogy agent, which assists with the semantic
integration of the information handled. Infos-
leuth agents engage in conversations rather

than single-message exchanges. 
Knowledgeable Agent-Oriented System20

is a Boeing project aimed at providing an
infrastructure for agent development. Kaos
relies heavily on object-oriented technology;
it uses, for example, a CORBA-based mes-
sage delivery mechanism. It also emphasizes
persistent interaction between agents that take
into account not only the particular commu-
nication primitive but the content of the mes-
sage and the applicable conversation policies.
The system allows the design of agents that
support specialized suites of interactions. 

Infomaster21 is an information integration
system from Stanford that uses ACL, the
KQML variant with KIF as its content lan-
guage. The resulting language does not
observe the distinction between the content
layer and the message layer. Infomaster inte-
grates structured information sources, giving
the illusion of a centralized, homogeneous
information system.

Java Agent Template, Lite—or JATLite—
is a package of Java programs, developed at
Stanford, that allow users to create communi-
cating agents quickly. Agents run as applets
launched from a browser, and for that reason all
agents register with an agent message router
facilitator that handles message delivery. 

The Java-based Agent Framework for
Multi-Agent Systems22,23 is a set of classes
that support implementing communicating
agents in Java. Developed at the University of
Cincinnati, JAFMAS supports directed
(point-to-point) communication as well as
subject-based, broadcast communications.
JAFMAS, which includes support for con-
versations, provides the environment for
AARIA, 24a planning and scheduling project
for manufacturing. 

Jackal,25developed at University of Mary-
land, Baltimore County, is another Java pack-
age that allows applications written in Java
to communicate via an ACL. KQML is cur-
rently the ACL of choice for this package,
but it could easily support FIPA ACL. Jackal
is currently in use in the CIIMPLEX pro-
ject,26,27another project that involves plan-
ning and scheduling for manufacturing.
Jackal strongly emphasizes conversations
between agents. It provides a flexible frame-
work for designing agents around conversa-
tions and includes extensive support for reg-
istration, naming, and control of agents.

A consideration of these projects leads us
to the following points:

• Java is rapidly becoming the language of

50 IEEE INTELLIGENT SYSTEMS



choice. Implementing BDI agents with
traditional AI languages is problematic
enough, but we have little experience and
fewer tools for doing so with object-
oriented languages like Java. This raises
again the problems of existing semantic
approaches and conformance to them.

• Many of the new APIs support conversa-
tions, an intuitive way of structuring an
agent’s activities. Given the problematic
nature of compliance with the ACL’s
semantic account, conversations shift the
focus from the agent’s internal workings to
its observable behavior—the sequences of
messages it sends to other agents. Agents
can agree on a conversation protocol for a
particular task—a negotiation or an auc-
tion, for example—and then engage in a
scripted interaction. We do not suggest that
this is a conformance test, but it might be
useful for an agent designer to know that
its interlocutors will engage in a scripted,
prespecified communicative behavior.

• Each implementation introduces its own
variety of supporting agents and services
for tasks such as naming, authentication,
monitoring, and brokering. We need some
agreement on the assumptions of these
services so that they can be provided as a
standard suite of tools.

The future of ACLs

We do not believe that KQML and FIPA
ACL are in conflict. They both express the
same basic ideas about what an agent com-
munication language is. KQML does not have
an official body behind it orchestrating its evo-
lution. At the same time, the KQML develop-
ment model, based on experimentation and
continuous feedback from its community of
users, has helped KQML grow with an em-
phasis on the practical concerns of agent
development. FIPA ACL does not have a com-
munity of users because no FIPA ACL appli-
cations have appeared yet, and thus it is
untested in practice. It does, however, enjoy
the support of an organization with a concrete,
comprehensive agenda. In the immediate
future, FIPA ACL’s choices will be put to the
test as applications that use it are deployed. A
new DARPA-sponsored initiative in the area
of agents promises to help guide the next iter-
ation of ACLs in the US research community.

Semantics have dominated the debate sur-
rounding ACLs. Despite the substantial
amount of work on this problem, the issue of

an agent’s conformance with the ACL seman-
tics (assuming approaches such as those out-
lined in this article) remains thorny.28 This
issue puts into question the degree of useful-
ness of such semantic accounts. In the near
future, more pragmatic concerns ought to be
addressed. Offering naming and registration
services along with basic brokering facilities
should be among the immediate goals of the
ACL community. 

Another area that requires attention is that
of defining basic ontologies for speaking
about agents and their query-answering capa-
bilities and requirements. Existing ACLs
offer a rather narrow and inflexible way for
performing such tasks. Finally, it would be
useful to standardize some of the basic con-
versation protocols for the more fundamen-
tal tasks. This would be of particular interest
to programmers who have no affinity for the
standard BDI approach. 

All of these pragmatic issues are very im-
portant for the deployment of agent applica-
tions. The availability of these services and
standards would reduce the overhead of agent
development and allow us to shift our focus to
what agents actually do. The design and devel-
opment of the infrastructure for communica-
tion has consumed the time and resources of
those involved with agent development, at the
expense of compelling new applications that
naturally fit the agent software paradigm.
Within the FIPA community, there is an effort
to address some of the infrastructure issues,
but the process is still in an early stage. It
remains to be seen to what extent that effort
will incorporate the experiences and lessons
of others in dealing with these issues.

We usually hear agents mentioned within
the context of the Web, and the Internet is the
arena in which we generally expect them to
compete. But KQML and FIPA ACL have fol-
lowed a path away from the mainstream Inter-
net technologies and standards. No major
player has manifested an interest in ACLs, and
no Internet standardization organization has
ACLs in its agenda. Should existing ACLs
become more Internet friendly? And if so,
how? Taking advantage of eXtended Markup
Language (XML)  and possibly Resource Def-
inition Format (RDF) seems like a reasonable
course of action, especially when it comes to
describing agents’features and capabilities. But
even at the syntactic level, how about replac-
ing KQML’s Lisp-like syntax with XML? 

Our point is that an ACL is an abstract idea
that over time has evolved to describe some
concrete and relatively well-understood con-

cepts. But this journey has taken place on the
sidelines of the revolution we have been
experiencing in the past few years. Continu-
ously running services for agents and better
integration with existing and emerging Web
technologies might push ACLs into the field.

THE CONCEPT OF A STANDARD
communication language for software agents
that is based on speech acts has found wide
appeal, both among researchers interested in
working out the theory of agent communi-
cation and among those with the aim of engi-
neering practical software systems. Many
researchers believe that the development of
an effective, rich ACL is one of the keys to
the agent paradigm.

KQML was among the first such ACLs to
be developed and used. Moreover, it is the
only one to date that has enjoyed substantial
use by people other than its developers. How-
ever, after eight years of experimentation and
experience, there are still serious signs of im-
maturity: In general, different KQML imple-
mentations cannot interoperate. There is no
fixed specification sanctioned by a consen-
sus-creating body. Finally, there is no agreed-
upon semantics foundation. Is the KQML
experiment a failure?

We think not. KQML has played an impor-
tant role in defining what an ACL is and what
the issues are when it comes to integrating
communication into agent systems. Although
existing KQML implementations tend not to
interoperate, this is mainly due to a lack of a
real motivation. Agent-based systems research
is still at an early stage, and there has been no
benefit to individual research groups in focus-
ing on interoperability issues. Although the
lack of a sanctioned specification has proba-
bly impeded the adoption of KQML for many
big projects, it has allowed much experimen-
tation with dialects and variations on the
theme. We hope that the current FIPA effort
will supply the needed sanctioning body for
the next iteration of a KQML-like language.

Finally, the semantics issue is in practice
much less important than it sounds, especially
since the problem of defining and identifying
conformance to the semantics is not resolved.
Given the possibility that it might be impossi-
ble to find a satisfactory solution to the seman-

MARCH/APRIL 1999 51



52 IEEE INTELLIGENT SYSTEMS

tic conformance problem, we computer scien-
tists will be left with a justifiable sense of dis-
appointment over a language that lacks formal,
verifiable semantics. However, this disap-
pointment need not touch the programmers
who want to register their agents, find other
agents, and send and receive ACL messages.
What they will find much more disappointing
is a lack of standard conventions for the basic
agent services, such as naming, authentication,
registration, capability definition, and facilita-
tion. Our focus on semantic clarity and purity
is partly responsible for the slighting of these
crucial issues. After all, what good does it do to
have an agent that conforms with some ACL
semantic account if you cannot register your
agent and send and receive ACL messages? 

References
1. J. Bradshaw, ed.,Software Agents,AAAI Press,

Cambridge, Mass., 1997.

2. M. Huhns and M. Singh, eds. Readings in
Agents,Morgan Kaufmann Publishers, San
Francisco, 1997.

3. M.R. Genesereth and S.P. Katchpel, “Software
Agents,”Comm. ACM, Vol. 37, No. 7, 1994,
pp. 48–53, 147.

4. R. Neches et al., “Enabling Technology for
Knowledge Sharing,”AI Magazine, Vol. 12,
No. 3, Fall 1991, pp. 36–56.

5. R.S. Patil et al. “The DARPA Knowledge Shar-
ing Effort: Progress Report,”Readings in
Agents,M. Huhns and M. Singh, eds., Morgan
Kaufmann, 1997.

6. T.R. Gruber, “A Translation Approach to
Portable Ontology Specifications,”Knowledge
Acquisition, Vol. 2, 1993, pp. 199–220.

7. M. Genesereth et al.,Knowledge Interchange
Format, Version 3.0 Reference Manual,tech.
report, Computer Science Department, Stan-
ford Univ., Stanford, Calif., 1992.

8. A. Farquhar, R. Fikes, and J. Rice,The Ontolin-
gua Server: A Tool for Collaborative Ontology
Construction,Tech. Report KSL-96-26, Stan-
ford Knowledge Systems Laboratory, Stan-
ford, Calif., 1996.

9. Specification of the KQML Agent Communi-
cation Language,tech. report, DARPA Knowl-
edge Sharing Initiative, External Interfaces
Working Group, 1993. 

10. Y. Labrou and T. Finin,A Proposal for a New
KQML Specification,Tech. Report TR-CS-97-
03, Computer Science and Electrical Engi-
neering Dept., Univ. of Maryland, Baltimore
County, Baltimore, Md., 1997.

11. P.R. Cohen and H.J. Levesque, “Communica-
tive Actions for Artificial Agents,”Proc. First
Int’l Conf. Multi-Agent Systems (ICMAS’95),
AAAI Press, 1995. 

12. Y. Labrou,Semantics for an Agent Communi-
cation Language,doctoral dissertation, Com-
puter Science and Electrical Engineering Dept.,
Univ. of Maryland, Baltimore County, 1996. 

13. Y. Labrou and T. Finin, “Semantics and Con-
versations for an Agent Communication Lan-
guage,”Readings in Agents,M. Huhns and M.
Singh, eds., Morgan Kaufmann, 1997.

14. Y. Labrou and T. Finin, “Semantics for an
Agent Communication Language,”Agent
Theories, Architectures and Languages IV,
M. Wooldridge, J.P. Muller, and M.
Tambe, eds., Lecture Notes in Artificial
Intelligence, Springer-Verlag, Berlin,
1998.

15. I.A. Smith and P.R. Cohen, “Toward a Seman-
tics for an Agent Communications Language
Based on Speech-Acts,”Proc. 13th Nat’l Conf.
Artificial Intelligence,AAAI Press, 1996. 

16. P.R. Cohen and H.J. Levesque, “Persistence,
Intention, and Commitment,”Intentions in
Communication, P.R. Cohen, J. Morgan, and
M.E. Pollack, eds., MIT Press, Cambridge,
Mass., 1990, pp. 33–69.

17. M.D. Sadek, “A Study in the Logic of Inten-
tion,” Proc. Third Conf. Principles of Knowl-
edge Representation and Reasoning
(KR’92), Morgan Kaufmann, 1992, pp.
462–473. 

18. R.J. Bayardo et al., “Infosleuth: Agent-Based
Semantic Integration of Information in Open
and Dynamic Systems,”Proc. ACM Sigmod
Int’l Conf. Management of Data, ACM Press,
New York, 1997.

19. M. Nodine and A. Unruh, “Facilitating Open
Communication in Agent Systems: The
Infosleuth Infrastructure,”Proc. Fourth Int’l
Workshop on Agent Theories, Architectures,
and Languages, M. Singh, A. Rao, and M.
Woolridge, eds., Springer-Verlag, 1997.

20. J.M. Bradshaw et al., “Kaos: Toward an Indus-
trial-Strength Open Agent Architecture,”Software
Agents,J.M. Bradshaw, ed.,AAAI Press, 1997.

21. M.R. Genesereth, A.M. Keller, and O.M.
Duschka, “Infomaster: An Information Inte-
gration System,”Proc. ACM Sigmod Int’l Conf.
Management of Data, ACM Press, 1997.

22. D. Chauhan,JAFMAS: A Java-Based Agent
Framework for Multiagent Systems Develop-
ment and Implementation,master’s thesis.,
Electrical Engineering and Computer Science
Dept., Univ. of Cincinnati, Cincinnati, 1997.

23. D. Chauhan and A. Baker, “JAFMAS: A Mul-
tiagent Application Development System,”
Proc. Second ACM Conf. Autonomous Agents,
M. Wooldridge and T. Finin, eds., ACM Press,
1998.

24. H.V.D. Parunak, A.D. Baker, and S.J. Clark,
“The AARIA Agent Architecture: An Exam-
ple of Requirements-Driven Agent-Based Sys-
tem Design,”Proc. First Int’l Conf. Auton-
omous Agents (ICAA’97), 1997, ACM Press,
New York, pp. 482–483.

25. R.S. Cost et al., “Jackal:A Java-Based Tool for
Agent Development,”Working Papers of the
AAAI-98 Workshop on Software Tools for
Developing Agents,AAAI Press, 1998.

26. Y. Peng et al., “A Multi-Agent System for
Enterprise Integration,”J. Applied Artificial
Intelligence, Vol. 1, No. 1, 1998.

27. B. Chu et al., “Toward Intelligent Integrated
Manufacturing Planning-Execution,”The Int’l
J. Agile Manufacturing, Vol. 1, No. 1, 1998. 

28. M. Wooldridge, “Verifiable Semantics for
Agent Communication Languages,”Int’l Conf.
Multi-Agent Systems (ICMAS’98), IEEE Com-
puter Society Press, Los Alamitos, Calif., 1998.

Yannis Labrou is a research assistant professor
of computer science and electrical engineering at
the University of Maryland, Baltimore County. He
is a founding member of the FIPA academy and
has been an active participant in FIPA specifica-
tion development. Prior to joining UMBC, Labrou
worked as an intern in the Intelligent Network
Technology group of IBM’s T.J. Watson Research
Center. He holds a BSc degree in physics from the
University of Athens, Greece, and he received his
PhD in computer science from UMBC in 1996.
Contact him at 1000 Hilltop Circle, ECS 210,
Univ. of Maryland, Baltimore County, Baltimore,
MD 21250; jklabrou@cs.umbc.edu. 

Tim Finin is a professor of computer science and
electrical engineering at UMBC. For more than 25
years, his research has focused on the applications
of artificial intelligence to problems in database
and knowledge base systems, natural-language
processing, intelligent interfaces, and robotics. He
is currently working on the theory and applications
of intelligent software agents. Finin holds an SB
degree in electrical engineering from MIT and a
PhD in computer science from the University of
Illinois, Urbana-Champaign. Contact him at
finin@cs.umbc.edu.

Yun Peng is an associate professor of computer
science and electrical engineering at UMBC. His
research interests include a variety of subjects in
artificial intelligence, neural networks, and artifi-
cial life. He is currently working on intelligent
software agents and their real-world applications.
He received his BS degree in electrical engineer-
ing from Harbin Engineering Institute, China, his
MS in computer science from Wayne State Uni-
versity and his PhD in computer science from the
University of Maryland, College Park. Contact him
at ypeng@cs.umbc.edu.


