Projection Normalization for Oblique Parallel Projections

- Orthogonal parallel projection can be seen as just a special case of an oblique parallel projection.
- An oblique projection can be characterized by the angle of the projectors with the VP.

(a)

For VP $z=0$ this results to P $M=\left[\begin{array}{cccc}1 & 0 & -\cot \theta & 0 \\ 0 & 1 & -\cot \phi & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

- Top and side views (see left) of a projector and VP $z=0$.
(θ, ϕ) characterize the degree of obliqueness.
Considering the top view (a), x_{p} can be found by

$$
\tan \theta=\frac{z}{x-x_{p}} \Leftrightarrow x_{p}=x-z \cot \theta
$$

and likewise following (b): $y_{p}=z-z \cot \phi$
After extracting the
orthogonal projection
from M we derive an
additional shear:
$M=M_{\text {orlh }} H(\theta, \phi)=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & -\cot \theta & 0 \\ 0 & 1 & -\cot \phi & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Projection Normalization for Oblique Parallel Projections

$M=M_{\text {orth }} H(\theta, \phi)=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & -\cot \theta & 0 \\ 0 & 1 & -\cot \phi & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
M is not in canonical form! It is a simple shear followed by an orthographic projection.

The same translation and scaling used for the orthographic case has to be inserted between the

$$
\begin{aligned}
& \text { shear and the projection: } \\
& M=M_{\text {orth }} S T H(\theta, \phi)=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\frac{2}{x_{\max }-x_{\min }} & 0 & 0 & -\frac{x_{\max }+x_{\min }}{x_{\max }-x_{\min }} \\
0 & \frac{2}{y_{\max }-y_{\min }} & 0 & -\frac{y_{\max }+y_{\min }}{y_{\max }-y_{\min }} \\
0 & 0 & \frac{-2}{\text { far -near }} & \frac{\text { far }+ \text { near }}{\text { far -near }} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & -\cot \theta & 0 \\
0 & 1 & -\cot \phi & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \Rightarrow P=\left[\begin{array}{cccc}
\frac{2}{x_{\max }-x_{\min }} & 0 & \frac{-2 \cot \theta}{x_{\max }-x_{\min }} & -\frac{x_{\text {max }}+x_{\text {min }}}{x_{\text {max }}-x_{\text {min }}} \\
0 & \frac{2}{y_{\text {max }}-y_{\text {min }}} & \frac{-2 \cot \phi}{y_{\max }-y_{\text {min }}} & -\frac{y_{\text {max }}+y_{\text {min }}}{y_{\text {max }}-y_{\text {min }}} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Camera Transformation ($M_{c a m}$) and Projection Normalization ($M_{p e r s}$) for Perspective Views

- Camera Transformation for Perspective Views ($M_{\text {cam }}$)

1. Convert World to Camera Coordinates

- Camera (COP) at origin, looking in the -z direction
- Display plane center along the z axis

2. Combinations of translate, scale, and rotate transformations

- Can be accomplished through camera location specification
- Projection Normalization for Perspective Views ($\mathrm{M}_{\text {pers }}$)

1. Convert viewing box to right frustum (on axis)

- This is because many APls including OpenGL allow non-right viewing volumes

2. Scale the right frustum into canonical form
3. Convert viewing box (right frustum) to a right parallelpiped

- "Shrinking" objects that are further away

Projection Normalization for Perspective Projections

- Again, find a transformation that distorts the vertices in a way that we can use a simple canonical projection:
perspective-normalization transformation

Given 1) a simple perspective projection with VP $z=-1$ and COP at origin:

$$
M_{\text {persp }}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

Given 2) a perspective view volume with the angle of view being $90^{\circ}=>$ frustum sides intersect VP at 45° angle. View volume is a semi infinite view pyramid with:
$x=+/-z, y=+/-z$
View volume is finite by specifying the near plane $z=z_{\text {max }}$ and the far plane $z=z_{\text {min }}$ with $z_{\text {max }}>z_{\text {min }}$

Projection Normalization for Perspective Projections

Let N be a nonsingular matrix similar to $M_{\text {persp }}$ with: $\alpha \neq 0, \beta \neq 0$

$$
N=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \alpha & \beta \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Applying an orthographic projection along the z-axis to N :
$M_{\text {orth }} N=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & -1 & 0\end{array}\right]=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0\end{array}\right]$
$\begin{aligned} & \text { Applying the result to } \\ & \text { an arbitrary point } \mathrm{p}^{\prime}: M_{\text {orth }} N p^{\prime}\end{aligned}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right]=\left[\begin{array}{c}x \\ y \\ 0 \\ -z\end{array}\right] \xrightarrow[\text { division }]{\text { perspective }}\left[\begin{array}{c}-\frac{x}{z} \\ -\frac{y}{z} \\ 0 \\ 1\end{array}\right]$

If we apply N followed by an orthogonal projection to a point we achieve the same result for x and y as applying a perspective projection to the same point!

Projection Normalization for Perspective Projections

Nonsingular matrix N transforms the original viewing volume into a new volume.
Now choosing α, β such that the new volume is the canonical view (clipping) volume.
Given the sides
$x=+/-z$ transformed by $\quad x^{\prime \prime} \quad$ results to $x^{\prime \prime}=+/-1$ and
$y=+/-z$ transformed by $\quad y^{\prime \prime} \quad$ results to $y^{\prime \prime}=+/-1$ and
The front of the view volume $z=z_{\max }$ is transformed to: $\quad z^{\prime \prime}=-\left(a+\frac{\beta}{z_{\max }} \frac{1}{\dot{\dot{j}}}\right.$
How to choose
The back of the view volume $z=z_{\text {min }}$ is transformed to:

$$
z^{\prime \prime}=-\left(a+\frac{\beta}{z_{\min }} \frac{)}{\dot{j}}\right.
$$

We choose: $\quad \alpha=\frac{z_{\text {max }}+z_{\text {min }}}{z_{\text {max }}-z_{\text {min }}} \beta=-\frac{2 z_{\text {max }} z_{\text {min }}}{z_{\text {max }}-z_{\text {min }}}$
Then the plane $z=z_{\text {min }}$ is mapped to the plane z " $=-1$ and the plane $z=z_{\text {max }}$ is mapped to the plane $z "=1$, hence we achieve the canonical volume:

$\Rightarrow N$ transforms the viewing volume to a right parallelepiped, a following orthographic projection is the same as a perspective transformation. N is called the perspective normalization matrix.

Projection Normalization for Perspective Projections

$z^{\prime \prime}=-\left(a+\frac{\beta}{z} \frac{\bar{j}}{\dot{j}}\right.$ is nonlinear but preserves depth-ordering, hence $z_{1}>z_{2} \Rightarrow z^{\prime \prime}{ }_{1}>z^{\prime \prime}{ }_{2}$

Notes:

- Hidden surface removal works in the normalized volume.
- Nonlinearity can cause numerical problems due to limited resolution in the depth buffer.
- Only one viewing pipeline is required by carefully choosing a projection matrix to insert into the pipeline.
- Perspective-Normalization Matrix ($\mathbf{N}_{\text {per }}$) converts frustum view volume into canonical orthogonal view volume:

$$
N_{\text {per }}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -\frac{\text { far }+ \text { near }}{\text { far }- \text { near }} & -\frac{2 \text { far } \times \text { near }}{\text { far }- \text { near }} \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Projection Normalization for non-right Perspective Projections

- The right (symmetric) perspective projection is a special case for an arbitrary perspective projection like the orthographic projection was for the parallel oblique case.
- An arbitrary perspective projection is required, e.g., for driving several large-screen projection-based VR display types which

1. use head tracking and
2. fix the VPs w.r.t. the moving COP and which hence require dynamic frustum calculation (responsive workbenches, Holoscreens, CAVEs, ...)
$>$ This type of projection is a.k.a. off-axis projection!

Do derive the projection matrix for off-axis set-ups we follow the same path as we did for the parallel projection case:
> Insertion of a shear transformation into the projection pipeline.

Projection Normalization for non-right Perspective Projections

Find H which satisfies:
$H\left[\begin{array}{c}\frac{\left(x_{\min }+x_{\max }\right)}{2} \\ \frac{\left(y_{\min }+y_{\max }\right)}{2} \\ z_{\min } \\ 1\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ z_{\min } \\ 1\end{array}\right]$

$H(\theta, \phi)=H\left(\cot ^{-1}\left(\frac{x_{\text {min }}+x_{\text {max }}}{2 z_{\text {max }}} \frac{1}{\dot{j}} \cot ^{-1}\left(\frac{y_{\text {max }}+y_{\text {min }}}{2 z_{\text {max }}} \frac{)}{\dot{\tilde{j}}}\right)\right.\right.$
The resulting frustum is described by the planes:
$x= \pm \frac{\left(x_{\max }-x_{\min }\right)}{2 z_{\max }}, y= \pm \frac{\left(y_{\max }-y_{\min }\right)}{2 z_{\max }}, z=z_{\min }, z=z_{\max }$

Projection Normalization for non-right Perspective Projections

Now scale the sides to achieve $x= \pm z, y= \pm z$
without changing near/far planes .
$S=S\left(\frac{2 z_{\text {max }}}{x_{\text {max }}-x_{\text {min }}}, \frac{2 z_{\text {max }}}{y_{\text {max }}-y_{\text {min }}}, 1 \frac{)}{\dot{j}}\right.$
S is without reference to z since it is uniquely determined by its results on four points, here the intersection points of the near plane and the sides. Now
$\left.N=\left[\begin{array}{llcl}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & -1 & 1\end{array}\right] \quad \begin{array}{l}\text { gets the far plane to }-1 \text { and the near plane to } \\ \text { the already chosen }\end{array}\right] \begin{gathered}\alpha=\frac{z_{\max }+z_{\min }}{z_{\max }-z_{\min }} \quad \beta=-\frac{2 z_{\max } z_{\min }}{z_{\max }-z_{\min }}\end{gathered}$

Projection Normalization for Perspective Views

- This results to the projection matrix:
$P_{\text {pers }}=N_{\text {per }} S H=\left[\begin{array}{cccc}\frac{2(- \text { near })}{x_{\max }-x_{\min }} & 0 & \frac{x_{\max }+x_{\min }}{x_{\max }-x_{\min }} & 0 \\ 0 & \frac{2(- \text { near })}{y_{\max }-y_{\min }} & \frac{y_{\max }+y_{\min }}{y_{\max }-y_{\min }} & 0 \\ 0 & 0 & -\frac{\text { far }+ \text { near }}{\text { far }- \text { near }} & -\frac{2 \text { far } \times \text { near }}{\text { far }- \text { near }} \\ 0 & 0 & 1 & 0\end{array}\right]$
- Where H converts a non-right frustum to a right frustum
- Where S scales the frustum into a canonical perspective view volume
- Where N is the Perspective-Normalization Matrix

Project onto Projection Plane

- Since normalization changed all projections into an orthogonal projection:
- Just ignore the z value!
- In effect, a non-event!
- In reality, we retain the z-value for hidden-surface removal and shading effects.
- Viewable world now in Normalized Device Coordinates (NDC).

3D Viewing Summary

