Realtime 3D Computer Graphics
& Virtual Reality

Bitmaps and Textures

Imaging and Raster Primitives

Vicki Shreiner

Imaging and Raster Primitives

= Describe OpenGL's raster primitives:
bitmaps and image rectangles

= Demonstrate how to get OpenGL to
read and render pixel rectangles

Pixel-based primitives

= Bitmaps
— 2D array of bit masks for pixels
= update pixel color based on current color
= Images
— 2D array of pixel color information
= complete color information for each pixel
= OpenGL doesn't understand image
formats

ED I IO 5
Pixel Pipeline = —
= Programmable pixel storage
and transfer operations

gl Bit map(), gl DrawPi xel s()

Pixel Pixel-Transfer Rasterization
Per Fragment
CPU — storage — Operations —— (including +— Opera?ions ——[Rhrame
; : Buffer
Modes (and Pixel Map) Pixel Zoom)
1
Texture gl CopyTex*| mage() ;
Memory

gl ReadPi xel s(), gl CopyPi xel s()

Positioning Image Primitives

gl RasterPos3f(%, v, z)
— raster position transformed like geometry

— discarded if raster position
outside of viewport

= may need to fine tune
viewport for desired results

Raster Position

Rendering Bitmaps

gl Bitmap(Glsizei width, G.sizei height,
GLfloat xorig, Gfloat yorig,

GLfl cat xmove, G.fl oat ym)ve,|
-

Rendering Fonts using
Bitmaps

= OpenGL uses bitmaps for font rendering
— each character is stored in a display list

Rendering Images @Lw

gl DrawPi xel s(wi dth, height, format,
type, pixels)

— render pixels with lower left of

Reading Pixels

gl ReadPi xel s(x, y, width, height, fornat,
type, pixels)

— read pixels form specified (x,y) position in

Pixel Zoom

gl Pi xel Zoorr(%, v)
— expand, shrink or reflect pixels
around current raster position

— fractional zoom supported

@G r

Storage and Transfer Modes

= Storage modes control accessing
memory
— byte alignment in host memory
— extracting a subimage

= Transfer modes allow modify pixel
values
— scale and bias pixel component values
— replace colors using pixel maps

Texture Mappin

Texture
Mapping

= Apply a 1D, 2D, or 3D image to geometric
rimitives

Texture Mapping

image

Texture Mapping and the
OpenGL Pipeline

= I[mages and geometry flow through
separate pipelines that join at the
rasterizer

— “complex” textures do not affect geometric
complexity

vertices —— geometry pipeline \

image ——| pixel pipeline

rasterizer

Rendering a texture

Rendering a texture: scanline

y A (50, to)

Rendering a texture: linear
interpolation

e
equispaced

v A
a) b)
B 170 |
/ farther
from
closer to the eye
the eye

Rendering a texture

a) texture space b) eye space

) screen space

3.0 (@

Affine combination of two points

Given the linear combination of points A= (A, A,, A;,1) and
B =(B,, B,, B,) using the scalars s and t:

SA+1B = (A +1B,,SA, +1B,,SA, +1B,,s+1)

This is a valid vector if s+t=0. It is a valid point if s+t=1.

1. If the coefficients of a linear combination sum to unity we call
it an affine combination.

2. Any affine combination of points is a legitimate point.
Why not building any linear combination of points P = SA +tBif
s +t do not sum to unity?

Affine combination of two points

-> A shift of the origin is the problem, let’s shift it by vector v, so A is
shifted to A+v and B is shifted to B+v. If P is a valid point it must be
shifted to P’=P-+v! But we have P’=sA+tB+(s+t)v. This is not in
general P+v, only if s+t=11

/';7'(P1+Pz)

- , depends on
System 2 e ’ . 7 system
S Sl / /
P o tas / .
1 _.o? S (P, + P,)
A / 2
System 1

/

A P,

/:// \. // e g
o TS (P + P2

Y

Linear interpolation of two points

Let P be a point defined by a point A and a vector v scaled by s
and substitute v with the difference of a point B and A.

P=A+svU P=A+s(B- A

This can be rewritten as an affine combination of points as:

P=A+gB- AU P=sB+(1- 9A

This performs a linear combination between points A and B !

For each component ¢ of P, Pc(s) is the value which is the fraction
s between Ac and Bc. This important operation has its own
popular name lerp() (linear interpolation).

doubl e | erp(double a, double b, double s){
return (a+ (b—-a) * s);}

Correspondence of motion along
transformed lines

Let M be an affine or general perspective transformation.
The points A and B of a segment map to a and b.
The point R(g) maps to a point r(f).

A ,
r(f) b
Lo =T &7
B

How does g vary if f changes?

Why in the direction f->g? ->The process is to be embedded in the
raster stage of the rendering pipeline!

Correspondence of motion along
transformed lines

Let a = (a,,8,,8,, &,) be the homogenous rep of a, therefore

a= g?— 2 ,%g is calculated by perspective division.
s &4 Qg

MmapsAtoa=> a=M(AL)" and

R(g) = lerp(A B,g) mapsto M (lerp(AB,g)1)" =lerpl,b,g)

= (lerp(a,, b, g).lerp(a,, b, 9), lerp(as, by, g).lerp(a,, b, 9))

The latter being the homogenous coordinate version T (f)of the point r(f).

b=M(BY)

Correspondence of motion along
transformed lines

(lerp(a,, by, g).lerp(a,.b,, g).lerp(a,, by, g), lerp(a,. b, 9))

Component wise (for one comp.) perspective division results in

rl(f):% but we also have r(f)=lerp(a,b, f)
9 1

and hence (for one comp.) r,(f) = Ierpgai B g
a b g

f

Iting i = .
resultingin 0 |erp&&1'f9
K, "' 5

Correspondence of motion along
transformed lines

f
g=——F-—"7-—"2 R(g) maps to r(f) with different
Ierp@ 1 f & fractions for fand g !
ga’ P g=fp f=0Uf=1Ub, =3,

8

Finding the point

The point R(g) that maps to r(f) is as follows (for one comp.):

Blf_
4 ﬂ
el 1 .0

lerpga4 b, ! ;

Is there a difference if the matrix M is an affine or a perspective
projection?

Ierpg

In the affine case, a,and b,are both unity and the relation
between R(g) and r(f) degenerates to a linear dependency
(remember the lerp() definition) and equal steps along ab
correspond to equal steps along AB.

Finding the point

The perspective transformation case, given a matrix M (here the
one that transforms from eye coordinates to clip coordinates):

éN 0 O Ou
€ N 0 oY o

M =€ u Given a point A this leads to:
00 ¢ df M(AD =(NA,NA,CA +d - A)
&80 0 -1 0f
e u

The last component @, = - A;is the position of the point along
the z-axis —the view plane normal- in camera coordinates
(depth of point in front of the eye).

a,,b, interpreted as the depth represent a line parallel to the
view plane if they are equal, hence there is no
foreshortening effect.

Texture processing during the scanline
process: hyperbolic interpolation

a) b)
We search for: (5. 13) ¥
L \
(Seﬁ’tleﬂ)and (Sright’ tright) B / y‘;’f’ ’ .
given: -
A Ybott a ‘

f= (Y' ybott)/ (ytop - ybott) (Sq,14) - ‘.‘

follows: erpgs—’* 5 fQ How does it look like for 4, ?
a,’b,’ 5 .
Sty (¥) = — |erpa_A t_B’fg
B s B
lerp g— —, f=
a,’'b’ 3

Texture processing during the scanline
process: hyperbolic interpolation

= Same denominator for S, and t,e:

| B, S, ¢ 9 A linear interpolation.
erpga_ ’b_’ + = Nominator is a linear interpolation of
Suety (¥) = 4 4 @ texture coordinates devided bya,
ler el 1 £ 9 and b,.
pga4 ’b4 ' B = This is called rational linear rendering

[Heckbert91] or hyperbolic
interpolation [Blinn96].

Given y, the term s,/a,,S:/b,.t\/a,t:/b,Ya,,1/b, is constant.

Needed values for nominator and denominator can be found
incrementally (see Gouraud shading).

Division is required for S« and t(|eft).

Scanline processing using hyperbolic
interpolation in the pipeline

A s, t,mm A syt e (I,.\'A,//A.C aan g S a
\ he \ etV . perspective .
4{ MV }—){ shade HpmspcumeH Cllp H division Hwewpon}—»D
Vs tn

Each vertex V is associated with texture coords (s,t) and a normal n.
The modelview matrix M transforms into eye coords withs, =Sit, =t .
Perspective transformation alters only A which results into a.

What happens during clipping?

Hyperbolic interpolation in the pipeline

During clipping a new point D=(dl,d2,dj,d4) is created by

d =lerp (a.h,t)i=1...4 for some t.

The same is done for color and texture data. This creates a new
vertex, for the given vertex we have the array

(a,8,8,8,,5,t,,C1)

Which finally undergoes perspective division leading to

(xvzls/a.t/a,.cYa)
What is (x,y,2)?

-> (x,y,z) = position of point in normalized device coordinates.

Why don’t we devide c?

Hyperbolic interpolation in the pipeline

What happens now if we calculate (s,t) in the described way?

->Referencing to “arbitrary” points into (s,t) space might further
produce visual artifacts due to sampling errors.

. Il } Il
o S 1.1 I 1.1
..\ 2? I.12 o
2 3

Hyperbolic interpolation in the pipeline

Point sampling vs. bilinear filtering.

Texture Example

= The texture (below) is a
256 x 256 image that has been

mapped to a rectangular
ol e

Applying Textures |

= Three steps
Ospecify texture

Applying Textures 1l

— specify textures in texture objects
— set texture filter
— set texture function

Texture Objects

= Like display lists for texture images
— one image per texture object

Texture Objects (cont.)

= Create texture objects with texture data and
state

Specify Texture
Image 11

e

m Define a texture image from an array of
texels in CPU memory

— dimensions of image must be powers of 2

m Texel colors are processed by pixel pipeline

— pixel scales, biases and lookups can be
done

Converting A Texture Image
= |f dimensions of image are not power of 2
— *data_in is for source image

— *data_out is for destination image
= Image interpolated and filtered during scaling

Example

class RGB{ // holds a color triple — each with 256 possible
intensities

public: unsigned char r,g,b;

bs

Example cont.

voi d RCGBpi xmap: : makeChecker boar d()
{ /I meke checkerboard patten
nRows = nCol s = 64;
pi xel = new RGB[3 * nRows * nCol s];

Example cont.

voi d RGBpi xmap :: setTexture(GLui nt textureNane)
{

gl Bi ndText ur e(G._TEXTURE 2D, t ext ur eNane) ;

gl TexPar anet eri (G._TEXTURE 2D,
(5 =>4 = \V/A =R (4 NEAR)

Specifying a Texture:
Other Methods

= Use frame buffer as source of texture image
~ uses current buffer as source image

Texture |—'

= Based on parametric texture coordinates
m gl TexCoor d* () specified at each vertex

Texture Space Object Space
11 (s,)=(0.2,0.8)
0,1 2
Qc--mmmmmmme
§ S
\\ AN
\oole T (0.4,0.2)
b
B C
0,0 1, o (0.8,0.4)

Generating Texture
Coordinates

= Automatically generate texture coords

= specify a plane
— generate texture coordinates based upon
distance from plane

= generation modes

Tutorial: Texture

Tk M- e R S
N3 = R L IQE'!.-A

-

GL OpenGL @

Texture Application Methods

= Filter Modes

— minification or magnification

— special mipmap minification filters
= Wrap Modes

— clamping or repeating
= Texture Functions

— how to mix primitive’s color with texture’s

color
= blend, modulate or replace texels

Filter Modes

gl TexParaneteri (target, type, node);

Texture Polygon Texture Polygon
Magnification Minification

Mipmapped Textures

= Mipmap allows for prefiltered texture maps of
decreasing resolutions

Wrapping Mode

m Example:
gl TexParaneteri (G._TEXTURE 2D,
GL_TEXTURE_WRAP_S, G._CLAMP)
gl TexParaneteri (G._TEXTURE 2D,
GL_TEXTURE_WRAP_T, GL_REPEAT)

Texture Functions

= Controls how texture is applied

= G._TEXTURE_ENV_MIDE modes

= Set blend color with
CL TEXTURE ENV CCLCR

Perspective Correction Hint

m Texture coordinate and color interpolation

— either linearly in screen space
— or using depth/perspective values (slower

Is There Room for a Texture?

m Query largest dimension of texture image
— typically largest square texture
— doesn’t consider internal format size

Texture Residency

m Working set of textures
~ high-performance, usually hardware accelerated

Advanced OpenGL Topics

= Display Lists and Vertex Arrays
= Alpha Blending and Antialiasing

