Realtime 3D Computer Graphics
& Virtual Reality

Viewing
Transfforl"natlon o
Pipeline Ih =
object eye clip nor malized window

device

Modelview Projection Perspective Viewport
Matrix Matrix Divison Transform

X0 0<

Modelview Projection o oo calculations here

- — material = color
HELE R — shade model (flat)
polygon rendering mode
polygon culling

clipping

Example Frame Rending

m Establish World
m Establish Viewpoint & Display Plane

*
Rendering order may be changed based on agorithms involved!

Viewing

= Process for “Seeing” a world

= Projection of a 3D world onto a 2D
plane

= Synthetic Camera Mode

Viewing Issues

= Location of viewer
= Location of view plane
= What can be seen (Clipping)

= How relationships are maintained
— Parallel Lines
— Angles
— Distances (Foreshortening)
— Relation to Viewer

Objects vs. Scenes

= Some viewing techniques better suited
for viewing single objects rather than
entire scenes

= Viewing an object from the outside
(external viewing)
— Engineering, External Buildings

= Viewing an object from within (internal
viewing)
— Internal Buildings, Games

Definitions

m Projection: a transformation that maps from a
higher dimensional space to a lower
dimensional space (e.g. 3D->2D)

m Center of projection (CoP): the position of the
eye or camera with respect to which the
projection is performed (also eye point,
camera point, proj. reference point)

m Projection plane: in a 3D->2D projection, the
plane to which the projection is performed
(also view plane)

Projectors

= Projectors: lines from coordinate in
Original Space to coordinate in
Projected Space

Projectors

Projection

(Direction of
Projection)

Perspective: Distance to CoP Parallel: Distance to CoP is
is finite infinite

Planar Geometric Projections

= Projection onto a plane
= Projectors are straight lines

= Alternatives:
— Some Cartographic Projections
— Omnimax

Center of Projection

s PErspective View
Macm\&

Projection plana

Viewing Classification — Planar
Geometric Projections

_ Parallel — Perspective
= Orthographic = One-Point
— Top (Plan) = Two-Point

— Front = Three-Point

Projections

Planar Geometric Projections
Parallel Perspective

Parallel Projections

m Orthographic: Direction of projection is orthogonal to the
projection plane
— Elevations: Projection plane is perpendicular to a principal axs
= Front

Parallel Projections:
Orthographic Projections

m Parallel Projectors Perpendicular to Projection

Plane
m Special Case of Perspective Projection

Orthographic Projections:
Multiview

Classical Drafting Views

Preserves both distance and angles
Suitable to Object Views, not scenes
Front-Elevation

Projection Plane Parallel to Principle Faces
Top or Plan-Elevation
Side-Elevation

Orthographic Projections:
Axonometric Projections

= Projection plane can have any
orientation to object

Axonometric Projections

m Isometric

— Symmetric to three faces
= Dimetric

— Symmetric to two faces
m Trimetric

— General Axonometric case

<S>

Dimatric

Axonometric Projections Cont.

m Foreshortening:

— Length is shorter in image space than an object space

— Uniform Foreshortening

— (As opposed to perspective projections where foreshortening

Oblique Projections

= Parallel Projections not Perpendicular to
Projection Plane

Obligque Projection Types

= Cavalier
— 45-degree Angles from Projection Plane

Perspective Projections

= One-point:
— One principal axis cut by projection plane
— One axis vanishing point

Perspective Projections

= First discovered by Donatello,
Brunelleschi, and DaVinci during
Renaissance

= Objects closer to viewer look larger

2 :.:.g‘"

Perspective Projection

m In the real world, objects exhibit perspective
foreshortening: distant objects appear smaller

m The basic situation:

Perspective Projection

m When we do 3-D graphics, we think of the
screen as a 2-D window onto the 3-D world:

How tall should
this bunny be?

Perspective Views

m Objects further away look smaller
m Natural look

Perspective Projections

NEERAR
y 5

Vanishing Points

m Perspective Projection of any set of parallel
line (not perpendicular to the projection
plane) converge to a vanishing point

m Infinity of vanishing points
— one of each set of parallel lines

Axis Vanishing Points

= Vanishing point of lines parallel to one
of the three principal axes

= There is one axis vanishing point for
each axis cut by the projection plane

= At most, 3 such points

= Perspective Projections are categorized
by number of axis vanishing points

One-Point Projection i

Center of Projection on the negative z-
axis with viewplane in the x-y plane.

Xprojected — xd/(d+z) = x/(1+(z/d))

Yprojected = Yd/(d+2) =y/(1+(2/d)) (0.0,9) ,

gl 0 0 Opexy é Xx 0 é/@+(z/d)u
& 0B U @& u é U
@ 0 0 O00zi €6 0 U & 0 a
D 0 Ud 1y Q+@df § 1§

Another
One-Point Projection

Center of Projection at the origin with
view plane parallel to the x-y plane a
distance d from the origin.

Xprojected — dx/z = x/(z/d)

yprojected = dy/z = Y/(Z/d)

6l 0 0 Ouéxu éx u él/(z/du

& weu é., 0 é ¥

P 1 0 Ogyg gy y_aylz/dy

© 0 1 OKzu €zu & d d

@ 0 Ud OfEly &/dy & 1 ¢
Mper

Points plotted are x/w, y/w where w = z/d

Specifying An Arbitrary 3-D
View

m Two coordinate systems
— World reference coordinate system (WRC)
— Viewing reference coordinate system (VRC)

m First specify a view plane and coordinate system
(WRC)
— View Reference Point (VRP)
— View Plane Normal (VPN)
— View Up Vector (VUP)

m Specify a window on the view plane (VRC)
— Max and min u,v values (Center of the window (CW))
— Projection Reference Point (PRP)
— Front (F) and back (B) clipping planes (hither and yon)

Synthetic Camera Model

Camera Analogy

= 3D is just like taking a photograph (lots
of photographs!)

Camera Projection

Camera Analogy and
Transformations

= Projection transformations
— adjust the lens of the camera

= Viewing transformations

Coordinate Systems and
Transformations

= Steps in Forming an Image
— specify geometry (world coordinates)
— specify camera (camera coordinates)
— project (window coordinates)
— map to viewport (screen coordinates)

= Each step uses transformations

= Every transformation is equivalent to a
change in coordinate systems (frames)

Projection Specification

Projection Characteristics

m Camera/Viewpoint Location
m Camera/Viewpoint Direction
m Camera/Viewpoint Orientation
m Camera/Viewpoint Lens (View
Volume)
— Width/Height of Lens
— Front/Back Clipping Planes

m Parallel or Perspective Projections

— Parallel is special case of
Perspective

OpenGL Camera or Projection
Coordinates

¥ y

Visible
Objects in the
-z difection
-
X

Display Plane
centered at
F (0,0,0)

z

Specifying Viewing
Characteristics

= Fixed Camera / Move World

= “Look At”

= View Volume / Display Plane
Specification

= Vector Specification

Camera Location Relative to
World Coordinates

= Can be thought of in two ways:

— Camera location is specified in world
coordinates

— World coordinate frame is located in
camera coordinates
= Camera transformations are reverse of
World transformations

Fixed Camera / Move World

m Fix the camera at a specific location/orientation

m Transform the world such that the camera sees the
world the “right” way — l.e., move the world, not the

camera

m Typical approach for OpenGL

“Look At”

m Setup the camera to “Look At” the world
m Set the camera location

m Set the “look at” point

m Set the camera rotation angle

m Example: gluLookAt ¥

(utz,uty,ut;ﬂ

View Volume / Display Plane
Specification

= Specify View Volume and Display Plane

Viewing Volyme

Far Clipping
Plane

Near Clipping
Plane

Projection Plane

Fun with View Volumes

m All projection information is captured in view
volume and projection plane.

m What happens if we play with these values?
— Oblique Parallel Projections

— Non-Right Frustum Perspective Projections
® View Volume Values

— Box Back Clipping
= Lower-Left Corner/Upper Right Corner of back and front planes Flane
= Back Plane Angles/Front Plane Angles

— Projection Plane
= Lower-Left Corner/Upper-Right Corner
= Angle
= Location Relative to View Volume

Vector Specification

= Most flexible method of viewing specification
= View plane may be anywhere with respect to the

VRC Coordinate System

m Viewing-Reference Coordinate (VRC) System
— n-axis - along View-plane normal (VPN)

Viewing Window

= Min/Max u and v ranges
= Need not be symmetrical around VRP

\'

ax, v-max)
(u-min,
Q . u
n VP

Center of Projection

= Projection-Reference Point (PRP)

Center of Projection
(PRP)

Direction of Projection

= Projection-Reference Point (PRP)

Oblique Parallel Projection

= Vector from PRP to Center of the
Window not parallel to VPN

Perspective View Volumes

Back Clipping
|

Orthogonal View Volumes

= Specification of Viewing Volume

Back Clipping
Plane

Front Clipping
Plane

Oblique Projections

Back Clipping
Plane

Projection Specification in

Projection Specification Iin
OpenGL

m Locate World in Camera Coordinates

— Alternative: gluLookAt encapsulates world to
camera coordinate transformations

m Select View Type (Pespective or Orthogonal)
m Set View Volume (glFrustum, glOrtho,
gluPerspective)
— (near clipping plane is projection plane)
m Conceptually not as flexible as VRC system

— Although with world coordinate transformation,
you can obtain the same results

Projections in OpenGL

m Camera located at (0,0,0) pointing in the -z
direction. Up is positive y direction.

m GL_Modelview Matrix controls the world

m GL_Projection Matrix controls the camera

CT™M

Vertices in
Object or World
Coordinates

Model-View

Projection

Vertices in
Viewpoint
Coordinates

OpenGL

= Move the world relative to the camera
= For example:

— Moving the camera +10 along the Z axis is
equivalent to moving the world —10 along
the Z axis

— Is rotating the camera positively around
the y axis the same as rotating the world
negatively around the y axis?

OpenGL Implementation of
View Volume / Display Plane

m glFrustum

— Display Plane is same as Near Clipping Plane

— Specify Lower-Left and Upper Right Corners of
Near Clipping Plane

— Specify Near and Far Distances

z=-far

Near Clipping
copP Plane

Projection Plane

glFrustum Variations

m Display Axis (-z) does not have to go through
the center of the window

z=-far -Z

OpenGL Alternatives

= Alternative: gluPerspective
— Specifies Frustum via viewing angles

Projection Transformations

NOTE: Throughout the following discussions,
we assume an OpenGL-like camera
coordinate system (COP at the origin, DOP
along the z axis, z,, < 0). The concepts are
the same for any arbitrary viewing
configuration but the math is slightly more
complicated.

Projecting Points onto a
Display Plane*

m Projection of world onto display plane involves a perspective
transformation:
- p‘=Mperp
— Not affine (parallel lines do not remain parallel)
— Non-reversable

Cr,2)
’ v, 2}

: e 0 K g [() 5%
L Tan ‘AP/T |

T]

z=d

L]

[13] e

Projection of point onto
display plane

m Observe:
m (Same for y)
m Results in non-uniform foreshortening

Perspective Projection

m The geometry of the situation is that of similar
triangles. View from above:

P(x Y. 2

What is y'?

Perspective Projection

m Desired result for a point [X, Y, z, 1]T projected
onto the view plane:

What could a matrix look like to do this?

Use of Homogeneous
Coordinates

= We can use homogeneous coordinates to make
perspective transformation easier

exu
e u
2y

Use of w in homogeneous
coordinates

= Let matrix M transforms point p into
point g:

é X U gl 0 O Ouexu
?yl,J 0 1 0 oS¢
q=¢ ~ U=Mp=¢ e
ez Uu e 0 1 Ouezu
e u e ue, u
az/dy & 0 1/d Opalj
What is g?
m Then convert q back to a 3D point:
€ X U 4
~ - e X u
gz/dy &qu &%u
eV i 8 Y 4_ &g
== ;= =
=ez/da™ 57 q4 " ez
€zZU ady &’y
€z/dl & .y éla
1
81H e u

m Thus q’ is our projection of p onto the display
plane!

A Perspective Projection

Matrix
m Example:
exu él 0 0 Odexd
é ., u Ué, u
e¥i-@ 1 0 Oy
ezu & 0 1 Ouezu
e ,u Ué, U
&2/dy @ 0 Yd Opelg
m Or, in 3-D coordinates:
D
Ed’ zd G

Thus, Mis M,

= Thus, the matrix M is used to project
points onto a perspective display plane

&€ 0 0 O0f
5 7
@ 0 1 O0d
9 0 1/d of

Simple Projection Pipeline

= Simple OpenGL-like Projection Matrix:

> | Model-View
Matrix

> Projection

Matrix

Perspective |
Division

Orthogonal Projections, Mo

= Special Case of Perspective Projection
= Display Plane at z=0

X=X 0
eyu

= e’ Pu
Yo =¥ €z, U
z =0 e, u
p a6l

CE:DCD> 8> CD6D>

&

o O +» O

Ouéxu

o O O O
8‘<
=

Now What?

m Several issues are not address with the
simple projection matrixes we have
developed:

Clip Against View Volume

Back Clipping
Plane

Canonical View Volume

Define Viewing Volume via Canonical View Volumes
Plus: Easier Clipping

Minus: Another Transformation

OpenGL volume (other APIs may be difyferent):

Projection Normalization

= Distort world until viewing volume in
world fits into a parallel canonical view
volume

3D Viewing Transformation

m Input 3D World Coordinates

m Output 3D Normalized Device Coordinates
— (a.k.a. Window Coordinates)

. Data in 3D Entire World in Viewable World in .
Da(t:a mrj’.ﬁ \:Vorld Camera Normalized Device Normalized Device N%C orgyr\]/”t]dow
e 'i eS8 Coordinates Coordinates (NDC) Coordinates (NDC) Oo, 2iE8
| | : i |
Transform i . 0
> worldinto |[™] Apply. > | Clip Against [T Project onto
c Normalizing View Vol Projection
amera Transformation 1ew volume Plane
Coordinates
. Data in 3D Entire World in Viewable World in -
Daéig]r;ﬁa\gzrld Camera Normalized Device Normalized Device N%%;LXY;?SSW
i Coordinates Coordinates (NDC) Coordinates (NDC) .
: i i i i
_I> Transform I Apply _I> _L Project onto i
World into Normalizing C.“p Against Projection
Camera ; View Volume
. Transformation Plane
Coordinates
|
p..=M_ p Pproj = FpersPeam Just set z to zero
cam cam
or (Or ignore)

pproj = orthopcam

Camera Transformation in
Orthogonal Views (M.,.,)

m Convert World to Camera Coordinates
— Camera at origin, looking in the —z direction
= Display plane center along the z axis

— Combinations of translate, scale, and rotate
transformations

— Can be accomplished through c era location«
specification

Projection Normalization for
Orthographic Views (P,ho)

m Translate along the z axis until the front
clipping plane is at the origin

m Scale in all three dimensions until the viewing
volume is in canonical form

Projection Normalization for
Orthographic Views

g 2 0 0 _ Xmax + Xmin 8
éXmax = Xpin Xinax = Xmin G
é 0 2 0 _ Yimax + Ymin u
I:zxtho = SorthoTortho = 9 Yiax = Yiin Yimax = Yimin lil
e -2 far +near Y
e 0 - u
é far - near far - near
g 0 0 0 1§

Camera Transformation for
Perspective Views (M.,

m Convert World to Camera Coordinates
— Camera (COP) at origin, looking in the —z direction
= Display plane center along the z axis
— Combinations of translate, scale, and rotate transformations
— Can be accomplished through camera location specification

Projection Normalization for
Perspective Views (Pps)

Projection Normalization for
Perspective Views (Pps)

m 1) Convert viewing box to right frustum

— This is because many APIs including OpenGL allow non-right
viewing volumes

m 2) Scale the right frustum into canonical form

m 3) Convert viewing box (right frustum) to a right parallelpiped
— “Shrinking” objects that are further away

Perspective-Normalization Matrix

(Nper)

m Converts Frustum View Volume into Canonical
Orthogonal View Volume

A

g

Z
I
B OGP

0 0 0 u
1 0 0 3
0 - far + near _ 2far mearﬂ

far - near far - near (i
0 1 0 [é]

Projection Normalization for
Perspective Views

é2(' near) Xmax + Xmin u
o Sl P 0 Zmac™ Tmin o g
éxmax = Xnin Xnax = Xmin U
é 0 2(_ near) ymax + ymin 0 l:]
I:)pers = Npers_| :é Ymax = Ymin Ymax = Ymin L,'I
2 far +near 2 far xnear U
é 0 0 - u
é far - near far - near j
g o 0 1 0§

= Where H converts a non-right frustum to a right frustum

m Where S scales the frustum into a canonical perspective
view volume

m Where N is the Perspective-Normalization Matrix

Project onto Projection Plane

m Since normalization changed all projections
into an orthogonal projection:
— Just ignore the z value!
— In effect, a non-event!

m In reality, we retain the z-value for hidden-
surface removal and shading effects.

m Viewable world now in Normalized Device
Coordinates (NDC) or Window Coordinates

3D Viewing Summary

) . . . Viewable World in
Datgblre(lgcal Data in 3D World el £12) S L] 1 Normalized Device

Camera Normalized Device Coordinates (NDC)
Coord::nates i Coordlinates Coordlnat?s (NDC) (aka World Coordinates)
| |

Coordinates

1 1 1
! Transform Transform ! Appl ! i
» Objectto [T™| Worldinto |[] PPl ™| Clip Against [T
Normalizing ;
World Camera Transformation View Volume
Coordinates Coordinates
CT™M

Model-View—++—| Projection

Matrix Operations

m Specify Current Matrix Stack
gl Mat ri xMode(GL_MODELVI EWor GL_PROJECTI ON)

m Other Matrix or Stack Operations

Projection Transformation

m Shape of viewing frustum
m Perspective projection

Applying Projection
Transformations
m Typical use (orthographic projection)
gl Matri xMode(G._PRQIECTI ON);

gl Loadl dentity();
gl Otho(left, right, bottom top, zNear, zFar);

N

Viewing Transformations

= Position the camera/eye in the scene
— place the tripod down; aim camera

= To “fly through” a scene =,
— change viewing transformation and {_}

redraw scene
[|

— up vector determines unique orientation
— careful of degenerate positions

Projection Tutorial

gluPerapective] 600 . 1.00 9.0 100)
gl ookl 0000 0.0 2010

Modeling Transformations

= Move object

= Rotate object around arbitrary axis

— angle is in degrees
= Dilate (stretch or shrink) or mirror object

Transformation Tutoria

|t FE
WanE-apace v 3

giTronsinbef, 00 000 000 k

giRekated] 520, 000 _1.00 _ 000 §
gScalef] 1.00 1.00 100 §

gBegn

Connection: Viewing and
Modeling

= Moving camera is equivalent to moving
every object in the world towards a
stationary camera

= Viewing transformations are equivalent
to several modeling transformations
gl uLookAt () has its own command
can make your own polar view or pilot view

Projection is left handed

= Projection transformations

() are left

handed

— think of zNear and zFar as distance from
view point

= Everything else is right handed,
including the vertexes to be rendered

Common Transformation
Usage

m 3 examples of resi ze() routine

— restate projection & viewing
transformations

m Usually called when window resized

m Registered as callback for
gl ut ReshapeFunc()

resi ze() : Perspective &
LookAt

v0|d resize(int w, int h)

(%Lsue) }](0, 0, (CLsizei) w,

gl Matri xl\/bde(G._PRQIECTI ON);

gl Loadl dentity();

gl uPer spective(65.0, (G.float) w/ h,
1.0, 100.0);

gl Mat ri xMbde(GL_MODELVI EW) ;

gl Loadl dentity();

gl uLookAt (0.0, 0.0, 5.

0.0, 0.0, O.

0.0, 1.0, O.

OOO

)

resi ze() : Perspective &
Translate

= Same effect as previous LookAt
v0|d resize(int w, int h)

&V evvport(0, 0, (Gsizei) w,
(Gsi zel)

gl I\/Btrlxl\/bde(GL_PRQIECTI ON);

gl Loadl dentity();

gl uPer spective(65.0, (G.float) w h,

1.0, 100.0);

gl Matri xMode(G._MODELVI EW) ;

gl Loadl dentity();

gl Translatef(0.0, 0.0, -5.0);

resi ze() : Ortho (part 1)

void resize(int width, int height)

{
GLdoubl e aspect = (G.double) width /
hei ght ;

resi ze() : Ortho (part 2)

if (aspect < 1.0) {
left /= aspect;
ri ght /= aspect;

} else {

Compositing Modeling
Transformations

m Problem 1: hierarchical objects
— one position depends upon a previous position
— robot arm or hand; sub-assemblies
m Solution 1: moving local coordinate system
— modeling transformations move coordinate system
— post-multiply column-major matrices
— OpenGL post-multiplies matrices

Compositing Modeling
Transformations

= Problem 2: objects move relative to
absolute world origin
— my object rotates around the wrong origin
= make it spin around its center or something else
= Solution 2: fixed coordinate system

— modeling transformations move objects around
fixed coordinate system

— pre-multiply column-major matrices
— OpenGL post-multiplies matrices

— must reverse order of operations to achieve
desired effect

Additional Clipping Planes

= At least 6 more clipping planes available
= Good for cross-sections
= Modelview matrix moves clipping plane

) AX+ By +Cz+ D < OeTe]elTo)

m gl Enabl e(GL_CLIP_PLANE)
m gl dipPlane(GL_CLIP_PLANEi, G.doubl e*
coeff)

Reversing Coordinate
Projection

= Screen space back to world space
gl GetIntegerv(G._VI EWPORT, GLint viewport[4])
gl Get Doubl ev(G._MODELVI EW MATRI X, GLdoubl e mvmatri x[16])

gl Get Doubl ev(GL_PRQIECTI ON_MATRI X,
GLdoubl e projmatrix[16])

gl uUnProj ect (G.doubl e Wi nx, W ny, W nz,
mvmatri X[16], proj matrix[16],
GLint viewport[4],
GLdoubl e *obj x, *objy, *objz)

= gl uProj ect goes from world to screen
space

