Computer Graphics and Virtual Reality

Math

Basic Graphical Mathematics

= Scalars
— Real Numbers
m Vectors
— Direction and Magnitude
= Matrixes
— 2 dimensional array of numbers
= Points are a position in space(x,y,2)
— Measured in a coordinate frame

Basic Graphical Mathematics

m Three views on related concepts
1. The mathematical view
= Scalars, points, vectors as member of mathematical sets

= Variety of abstract spaces and axioms for representing and
manipulating these sets

" (Linear) vector space, affine space, Euclidean space
2. The geometric view
= Mapping between the mathematical model and our perceived concept
of space
= Includes points as locations in space
= Has referential properties (deixis)
3. Computer science view

= See concepts as abstract data types (ADTs), a set of operations on
data

= use of geometric ADTs for points, vectors,...

Vectors

= Vector is a directed line segment
= Vectors have a direction and magnitude
— Vectors do not have a position!

= One view is as a displacement between
two points

Vector Components

= All vectors can be broken down into
their dimensional components vectors

Magnitude of a Vector

= Magnitude is “length” of vector

Mathematical Vector Spaces

m (Linear) Vector Space
— Scalars, Vectors
— Scalar-Vector Multiplication

Scalar-Vector Multiplication

—Multiply vector V by scalar a:

Vector-Vector Addition

= Add vectors V and W:
Z=V+W

Vector-Point Addition

= Add vector V to P1:

Vector-Vector Multiplication -
Scalar Product

Aka Dot Product
Vector — Vector to Scalar Multiplication

Product of two parallel components of the two
vectors

Vector — Vector multiplication producing a scalar

ux =|ulv|cosq

Vector-Vector Multiplication -
Cross Product

m Vector — Vector to Vector Multiplication

m Produces Normal Vector
— Perpendicular to plane formed by the two vectors

— Magnitude equal to area of parallelogram formed by the two
vectors

— U is unit vector (magnitude 1) that is perpendicular to plane

V"V, =UVyV,|sing V,”)
u

Vector-Vector Multiplication
continued

m Formulas for calculation of dot and cross products in
3D Cartesian space (i.e. orthonormal base vectors):

Matrixes

= Rectangular Array of Quantities
= Row (m) by Column (n)

Scalar Multiplication of a
Matrix

@ay, aa,aa; U
ga, aa, aagf

Matrix Addition

= Defined only for matrixes of the same
number of rows m and columns n

éan by a,+th, a;tby l;'
_€ u
A+ B_éa21+b21 8y, T by, az3+b23l]

@31 i b31 a32 i b32 a33 i b33g

Matrix Addition Properties

m Commutative
—A+B = B+A

Matrix Multiplication

= Let A be a m X n matrix
= Let B be a n x g matrix

Matrix Multiplication Example

Matrix Multiplication Properties

m Associative
— A(BC) = (AB)C

Matrix Transpose

= AT is interchange of rows and columns
= (AB)" =BT AT

ab ol & o &
€ U _ U T _érl
& e 108 [A B C] = 6By

& fH ECH

Identity Matrix

= Square Matrix | with 1's along the
diagonal and Q’s elsewhere

= Multiplication of Identify matrix has no
effect: l.e. a=la
éL00u

_ B Al
| _5010@
€001y

Inverse Matrix

m Suppose we have a matrix multiplication of a
square matrix A such that:

Vector Representation

m Any 3D vector can be represented by V=(V,,
Vy, V)
— Which is equivalent to: v=v,+ v+ v

Vector Representation
Continued

m Any vector can be represented by a set of scaling
values or displacements along with three vectors
along the coordinate frame axis’s:

Vector Representation in
Matrix Form

w=d,v, +d,v, +d,Vv,

Is equivalent to:

Convex Objects

= Convex Object is one where a line

Planes

m A “flat” surface in 3D space
m Minimum of three points

Coordinate Systems

= Definition
— Origin

Frame

= Origin Point P,
= Basis Vectors v;, V,, V3

Familiar Frame

éx
_é u
.y
ezH
whereP, = (0,0,0) and
elu é0u e0u
ViTe u’V2 glu’v3) u

O OH &

Further Representation of
Points and Vectors

= How do we distinguish between points
and vectors represented as:
exu
P= g/ﬂ whereP = P, +xv, +yv, +2zv,
ez
. ¢
> wherew =d,v, +d,v, +d,v,

I
B O @

EZ\C oc

Homogeneous representation of
vectors and points

m Use of 4x1 matrixes given a frame (Vl,Vz,Vg, Po)

&, U
&Y
P=ay +tay, ta\;+ R <=>P= (V1’V2’V31 F%)? “u
&,u
€.y
/el u
objects of interest (points, vectors)
\wlu
% u
w=dy, +dyv, +dyv; <=>w = (Vl’vz’vs’)e ?d
/ éd,u
é~u
reference frame a0 g

Homogeneous representation
arithmetic

The difference of two points is a vector:
(al’a21a3’1)' (by,by,b31) =(a;- by,a;- by,a,; - by,0)

The sum of a point and a vector is a point:
(al’aZ’a 3’1) +(by, b,,0;3,0) =(a, + by,a, +b,,a;, + by,1)

The sum of a vector and a vector is a vector:
(al,az,as,o) +(b,,b,,b3,0) =(a, +by,a, +b,,a, +b;,0)

Scaling a vector: a* (by, b,,b;,0) = (ab,,ab,,ab;,0)

Linear combination of vectors is valid

Matrix / Vector Multiplication

CRI G, a, a, a,l
<D, - 0] (S u
— éPz(¢= epg:uu _@&%1 8 8x ayup
p é lj p é q M ~ A z
op; U ol €, a, a; a,l

2D Transformations

Transformations

m What are they?
— changing something to something else via rules

— mathematics: mapping between values in a range
set and domain set (function/relation)

— geometric: translate, rotate, scale, shear,...
m Why are they important to graphics?

— moving objects on screen / in space

— mapping from model space to screen space

— specifying parent/child relationships

Coordinate Systems and
Transformations

= Steps in Forming an Image
— specify geometry (world coordinates)
— specify camera (camera coordinates)
— project (window coordinates)
— map to viewport (screen coordinates)

= Each step uses transformations

= Every transformation is equivalent to a
change in coordinate systems (frames)

Translations

® Moving an object is called a translation. We translate a point
by ad in% to the x and y coordinates, respectively, the

amount the point should be shifted in the x and y directions.
We translate an object by translating each vertex in the

Scaling

m Changing the size of an object is called a scale. We scale an
object by scaling the x and y coordinates of each vertex in the

object.

Rotation about the origin

m To rotate a line or polygon, we must

Rotation about the origin
(cont.)

From the double angle formulas: sin (A + B) = sinA cosB + cosA sinB

Transformations as matrices

Scale: €, Ouéxu_es, xxu
Knew = S xXold eO LeyLJ e xy
u
ynew Syyold Sy LB ’ .
Rotation: €cosq - SiNQUEXH _ éxcosq - ysing {

Xz = X,€0s(q - y;sing é. e u-ée, . 1
y, = x,sinq + y,cosq €3N4 COSY (gyy exsing +ycos

Translation: é.u éxu +t. U
Xnew=XoId+tx 3 Q+A Q:gy +t l,-,(l
ynew = yold + ty yu eyu yu

Homogeneous Coordinates

= |In order to represent a translation as a matrix multiplication
operation we use 3 x 3 matrices and pad our points to become 3
x 1 matrices. This coordinate system (using three values to
represent a 2D point) is called homogeneous coordinates.

X1 gcosq - 9nq OH
_éu = Zdn co 0
ID(x,y) - gylj R* e q =4 u

g0 0 1§

és, 0 Ou él 0 tu
~ 7 _ u
SX’yZEO Sy 03 Tx,y_éb il ty@
g0 0 1§ g 0 1y

Composite
Transformations

Suppose we wished to perform multiple transformations on a point:

P, =TyR
R=S,R
P = Rl
M = RSO%,ZTEIZL
P, = MR

Remember:

= Matrix multiplication is associative, not commutative!

e Transform matrices must be pre-multiplied

* The first transformation you want to perform will be at the far
right, just before the point

Composite Transformations -
Scaling

Given our three basic transformations we can create other
transformations.

Scaling with a fixed point
A problem with the scale transformation is that it also moves the
object being scaled.

Scale a line between (2, 1) (4,1) to twice its length.

Before After

Composite Transforms -
Scaling (cont.)

m If we scale a line between (0,0) & (2,0) to twice its length, the
left-hand endpoint does not move.

(0,0) is known as a fixed point for the basic scaling transformation.
We can use composite transformations to create a scale
transformation with different fixed points.

Fixed Point Scaling

Scale by 2 with fixed point = (2,1)
m Translate the point (2,1) to the origin

m Scale by 2
m Translate origin to point (2,1) Before
@028@2003@10-28@20-23 012345678 910
D11 dd 1 ap 1ol
€0 0 1H§) 0 1H§) 0 1y gJ 0 1@
T2.1 S&.l T21 C
(;Q g -ZIEELK;EZB (?3 §2 0 - 29?4@ gfil;l After
& 1 008L0= &l D 1 0pg=2 et
g ®u éu 2)
& 0 108U & g0 0 1p8y &g
C C 0123456 7 8 910

Rotation about a Fixed Point

Rotation Of g Degrees About Point (x,y)
®m Translate (x,y) to origin

Shears

Reflections

Reflection about the y-axis

&1 0 Ou

Reflection about the x-axis

e o0 o

More Reflections

Reflection about the origin

z

Reflection about the line y=x

Transformations as a change
In coordinate system

= All transformations we have looked at
involve transforming points in a fixed
coordinate system (CS).

= Can also think of them as a
transformation of the CS itself

Transforming the CS -
examples

Why transform the CS?

= Objects often defined in a “natural” or
“convenient” CS

= To draw objects transformed by T, we
could:
— Transform each vertex by T, then draw
— Or, draw vertices in a transformed CS

Drawing in transformed CS

= Tell system once how to draw the
object, then draw in a transformed CS
to transform the object
House drawn in a CS

that's been translated,
rotated, and scaled

) S - .

Mapping between systems

= Given:
— The vertices of an object in CS,

Mapping example

Mapping rule

= In general, if CS, is transformed by a
matrix M to form CS,, a point P in CS, is

Another example

General mapping rule

= |f CS, is transformed consecutively by
M;, M,, ..., M, to form CS_. ,, then a
point P in CS,_,, is represented by
M;M,..M,PinCS,.

= To form the composite transformation
between CSs, you postmultiply each
successive transformation matrix if you
are using column vectors!!!

Transposes and concatenation

a@l a2 a3p .

M=o b2 b3 P T M:Mip
&l c2 ¢34
aal bl clo

MT=¢a2 b2 c2: P’ =p'M] M]
&a3 b3 c3y

3D Transformations

Types of Affine
Transformations:

m Want transformations which preserve
geometry (lines, polygons, quadrics...)

Affine Transformations

m Property:
— Parallel lines remain parallel lines
— Finite points map to finite points
m Non-Affine Transformation: Projection

Homogeneous Coordinates

— each vertex is a column vector

— w is usually 1.0
— all operations are matrix multiplications

— directions (directed line segments) can be
represented with w = 0.0

3D Transformations

m A vertex is transformed by 4 x 4 matrices
— all affine operations are matrix multiplications
— all matrices are stored column-major in OpenGL
— matrices are always post-multiplied

— product of matrix and vector is

Transformations

m Change of an object from one form to
another

Transformations

m Transformations can be thought of as
changing an object within a frame or
changing frames

Transformation Math

m Let p be a vector or point in
homogeneous coordinates (4x1 Column
Matrix)

Matrix / Vector Multiplication

CRI &, a, a; a,l

<D, - (S) u
_aPzq ¢= epg:u _g%1 Ap 8y Ayg
P=epu P& M=¢€ v
Ps ! DQ:U Cay 3, A3 AU
£ é a
€P.0 ep?u A A Q3 AyuQ

epﬁ APy T, P, t AP, 8, Py U eail &, a; a, uepll U
ep% APy T Ay Py T35 P5 T3,y p41u éaZl Ay Sy Ay ueleu

gpg:l A1 Py T Ay, P,; T a0, T Ay, p41 u eaal a; 43 Ay %psla
8P% = Py + 8y Py +Ayu3Ps + A, p41u ea41 a, Q3 Au0EPaG

Translation

= Move object some distance along a
displacement vector d

= Rigid-Body Transformation (object does
not change shape)

Trandation Math 1

eu et @,

Trandation Math 2

el 0 0 a,u
< u

Trangdation Properties

m Can bereversed by:
-1

Scaling

m Change the size by a given value

Scaling Math 1

X(=b_ X

Scaling Math 2
&, 0 0 Oy

Pa

e U

Scaling Properties

m Can bereversed by:
-1

Rotation

= Rotate the object about an axis
= Rigid-Body Transformation (object does

Rotation about the main axes

The right-hand rule
to determine a

Rotation Math 1

= Rotation is done about a given axis
= Example, Rotation around the Z axis is:

Rotation Math 2

m Continuing the rotation about the Z axis:
p¢=R,p where

Rotation Math 3

= Rotation about the x axis:
p(=R,p where

Rotation Math 4

m Rotation about the y axis:
(= where

Rotation Properties

m Rotation order is very important!
m Can bereversed by:

Shear

= Change shape of object in an arbitrary
direction

Shear Math 1

= Shear the object in the x direction by q

xX(=Xx+ycotq

yé=y
2C=7

Shear Math 2

p¢=H,p where

Shear Properties

= Can bereversed by:

Topic >>
Use of Transformation

Use of Basic Transformation to
Perform Complex Transforms

= Transforms may be done in sequence

= Example to rotate an object about a
point along the z axis:
— Translate Object such that point is on the
origin
— Rotate Object around the z axis

— Translate Object such that the point is
back to its original location

Example

= Rotation of a cube abhout a point & axis

Transformation Concatenation

q=(C(B(Ap)) P q=CBAp

p— A Bl C | «a

M =CBA
q=Mp

= Please Note Reversal of Matrixes!
g = CBAp isnotsameasq = ABCp

Pipeline Transformation

GoentiL.

3D Transformations in OpenGL

OpenGL Issues

= OpenGL is a state machine
= Vertices are transformed using the CTM

(“current transformation matrix™):

Vertices in
Object or World
Coordinates

CT™M

Model-View

Projection

Vertices in
Viewpoint
Coordinates

Transformations in OpenGL

m OpenGL makes it easy to do transformations to

the CS, not the object

m Sequence of operations:
— Set up a routine to draw the object in its “base” CS
— Call transformation routines to transform the CS
— Object drawn in transformed CS

Transformations in OpenGL

= Modeling
= Viewing

OpenGL Continued

m Steps:

— Select Current Matrix
= glMatrixMode(GL_MODELVIEW)

OpenGL Continued

m Two forms of transformation matrices:

m Predefined types (Multiply Current Matrix)
— glTranslated, glTranslatef
— glRotated, glRotatef
— glScaled, glScalef
m Build your own matrix
— glLoadMatrix — Replace current matrix

— glMultMatrix — Multiple current matrix with new
matrix

OpenGL Matrix

= void glLoadMatrixd(GLdouble *m)
void glLoadMatrixf(GLfloat *m)

m glLoadMatrix replaces the current matrix with the
one specified in m.

® m points to a 4x4 matrix of single- or double-
precision floating-point values stored in column-
major order. That is, the matrix is stored as follows:
@ 8 3 a,l
é a
§31 a g 6‘13(J
e, a8 g auu
€. u
& & a; agQ

OpenGL transformation

dr awHouse() { dr awTr ansf or nedHouse() {
gl Begi n(GL_LI NE_LQOOP) ; gl Matri xMode(G._MODELVI EW ;
gl Vertex2i (.); gl Transl ated(4.0, 4.0,
0.0);

gl Vertex2i(.);

gl Scal ed(0.5, 0.5, 1.0);

Notes on OpenGL code

gl Matri xMode(GL_MODELVI EW ;
m Which “current transformation matrix” am | modifying?

gl Transl ated(4.0, 4.0, 0.0);

Composite transformations in
OpenGL

= concept of matrix stacks

= supports hierarchical
representations

= pushmatrix, popmatrix
= loadmatrix
= multmatrix

OpenGL matrix stack
example

gl LoadMat ri xf (D) ;

gl PushMat ri x() ;

gl Mul t Mat ri xf (nt);

gl PushMat ri x() ; \
gl Mul t Mat ri xf (m4);
render chair2;

gl PopMatri x();

gl Mul t Mat ri xf (nB);
render chairl;

gl PopMatri x();

render table;

gl PopMatri x();

render room

gl PushMatri x();

gl Mul t Mat ri xf (n2) ; Mqy*M,
render rug;

OpenGL Matrix Management

m Matrix Stack (glPushMatrix(), glPopMatrix())

— Push a copy of the current matrix onto the stack
= Saves a copy of the current matrix but does not remove

Specifying Transformations

m Programmer has two styles of specifying
transformations
— specify matrices (gl Loadvat rix, gl Mil tMatri x)

Programming Transformations

= Prior to rendering, view, locate, and
orient:

— eye/camera position
— 3D geometry

= Manage the matrices
— including matrix stack

= Combine (composite) transformations

Transformation
Pipeline

CPU

object eye clip normalized window
device

Modelview Projection Perspective Viewport
Matrix Matrix Divison Transform

X0 0<

Modelview Projection o oo calculations here

- — material = color
HELE R — shade model (flat)
° — polygon rendering mode
s — polygon culling
— clipping

Matrix Operations

m Specify current matrix stack

m Other Matrix or stack operations

= Viewport
— usually same as window size

— viewport aspect ratio should be same as projection
transformation or resulting image may be distorted

Object Representation vs
World Representation

m Object Coordinates (aka local coordinates)
m World Coordinates

m Manipulation of Objects in World

m Object Templates, Instances, Duplication

m Object Hierarchies
— Object Coordinate Hierarchies

m Not all model formats support object
coordinates

m Role of Object-Oriented Programming

Example of Transformation
Use

= Planet orbiting a sun:
= Each Time Tick:

Transformation examples

= Some tutor examples using
transformations and the transformation
stack

push for example

