Realtime 3D Computer Graphics
& Virtual Reality

Basic OpenGL template

OpenGL Geometric Primitives

-Allgeometncpnmmvesarespeclﬁedby

GL LI NES E f ;
GL_POLYGON

GL_PO NTS GL_LINE_STRIP G__LINE_LOOP
GL_TRI ANGLES

GL_QUADS
GL_QUAD_STRI P

GL_TRI ANGLE _STRI P GL_TRI ANGLE_FAN

Specifying Geometric
Primitives

= Primitives are specified using

— primType determines how vertices are
combined
G.fl oat red, greed, bl ue;
G fl oat coords[3];
gl Begi n(prinfype);
for (i =0; i < nVerts; ++i) {

gl Col or3f(red, green, blue);
gl Vert ex3f v(coords) ;

}
gl End() ;

Simple Example |

Simple Example 1|

Shapes Tutorial

I T R T e R O] il i on wA el

glBegin (GL_TRIANGLE_STRIF)
gliColoraf (100 ,000 100)
glvertexd 50
ICekarsf

glVertex2f (175.0 , 200.0)
glEnd();

Processing Polygons

Polygons

m In interactive graphics, polygons rule the
world

m TwoO main reasons:

Polygons

m A polygon is a many-sided planar figure composed of vertices
and edges.

m Vertices are represented by points (x,y).

Convex and Concave Polygons

m Convex Polygon - For any two points P;, P, inside the polygon,
all points on the line segment which connects P, and P, are
inside the polygon.

— All points P = uP, + (1-u)P,, uin [0,1] are inside the

Simple and non simple Polygons

m Simple Polygons — Polygons whose edges do not cross.

m Non simple Polygons — Polygons whose edges cross.
— Two different OpenGL implementations may render non simple
polygons differently. OpenGL does not check if polygons are simple.

OpenGL and polygons

m standard primitive — optimized for #polygons/second

= GL_POLYGON, GL_TRIANGLES,
GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN,
GL_QUADS, GL_QUAD_STRIP (filled)

m GL_LINE_LOOP (unfilled)
m expects planar, convex, non-self-intersecting
polygons

m strips and fans are compact, efficient ways to specify
lots of simple triangles

Rendering unfilled polygons

= trivial
= simple sequence of line renderings

= requires proper termination of lines at
endpoints

Inside Polygon Test

Inside test: A point P is inside a polygon if and only if a scanline
intersects the polygon edges an odd number of times moving from
P in either direction.

Max-Min Test

When crossing a vertex, if the vertex is a local maximum or
minimum then count it twice, else count it once.

ANV IRED

Count twice Count once

Filling Polygons

= Fill the polygon 1 scanline at a time

Scan-Line Algorithm

For each scan-line:

1. Find the intersections of the scan line
with all edges of the polygon.

For scan-line number 7 the sorted list

Edge Coherence

m Observation: Not all edges intersect each scanline.

m Many edges intersected by scanline i will also be
intersected by scanline i+1

Processing Polygons

m Polygon edges are sorted according to their minimum Y. Scan
lines are processed in increasing (upward) Y order. When the
current scan line reaches the lower endpoint of an edge it
becomes active. When the current scan line moves above the
upper endpoint, the edge becomes inactive.

Active Edges
Not yet active edges
esssssmme Finished edge

Ignored horizontal edge

Polygon fill rules (to ensure
consistency)

1. Horizontal edges: Do not include in edge table

2. Horizontal edges: Drawn on the bottom, not on the
top.

Polygon fill example

a5 [sl2[> [1s]slars [nui]

Antialiasing Polygons

m Polygon edges suffer from aliasing just as lines do. If an edge
passes between two pixels, they share the intensity. The same
method can be used on the scan line fill.

Fill Patterns

Fill patterns can be used to put a noticeable texture inside a polygon.
A fill pattern can be defined in a 0-based, m x n array. A pixel (X,y)
is assigned the value found in:

pattern((x mod m), (y mod n))

Halftoning

m For bitmapped displays, fill patterns with different fill densities can
be used to vary the range of intensities of a polygon. The result
is a tradeoff of resolution (addressability) for a greater range of
intensities and is called halftoning. The pattern in this case
should be designed to avoid being noticed.

m These fill patterns are chosen to minimize banding.

000
0
000

+ 9
+ 4
O8O

0

-

+ 8

oole eolNe o
LS (1 s
0 OO0 OO0
’
o ‘el t*

Gt

Polygons in OpenGL

m Colors of polygons, shading

m Sides of polygons
m Styles of Drawing

m How to structure geometry (e.g. polygons)
m An alternative way for “packing” OGL

commands

Simple shading

m We can specify color for each vertex
What happens if the colors are different?

m OpenGL interpolates between two points and
between the lines (->bilinear interpolation) of
different color if shading is smooth (default)!

= Shademodel

node = G._SMOOTH, G._FLAT

Shapes Tutorial

e -5 A Ve Corwrand arnipukaion wrd o

glBegin (GL_TRIANGLE_STRIP),

CoenGiL

Polygons in OpenGL

m Polygons can be drawn in three different ways:
— (1) points (vertices, see glVertex2f(10.0,10.0)), (2)
edges, (3) filled

m The two dimensional examples are just special

Polygons in OpenGL

= Which faces are to be rendered can be
controlled by OpenGL states:

Polygons in OpenGL

= How can we render a polygon in different
styles simultaneously?

Just draw it multiple times:
gl Pol ygonMode(G._FI LL);

gl Col or 3f v(yel | ow) ;

dr awGeonet ry() ;

gl Pol ygonMbde(G__LI NE) ;
gl Col or 3fv(red);

dr awGeonet ry() ;

Structuring of geometry |

/* sinple drawing vertex for vertex */
dr awCubel()
{
/* draw the first side of the cube */
gl Col or3f (1.0, 0.0, 0.0);
gl Begi n(GL_POLYGON) ;
gl Vertex3f(-1.0, -1.0, -1.0);
gl Vertex3f(-1.0, 1.0, -1.0);
gl Vertex3f(-1.0, 1.0, 1.0);
gl Vertex3f(-1.0, -1.0, 1.0);
gl End() ;
/* draw t he second side of the cube */
gl Col or3f (0.0, 1.0, 0.0);
gl Begi n(GL_POLYGON) ;

gl End();

Structuring of
geometry Il 5

/* put data in structs */

G.fl oat vertices[][3] = {{-1.0,-1.0,-1.0},{1.0,-1.0,-1.0},
{1.0,1.0,-1.0}, {-1.0,1.0,-1.0}, {-1.0,-1.0, 1.0},
{1.0,-1.0,1.0}, {1.0,1.0,1.0}, {-1.0,1.0,1.0}};

GLfloat normals[][3] = {{-1.0,-1.0,-1.0},{1.0,-1.0, - 1. 0},
{1.0,1.0,-1.0}, {-1.0,1.0,-1.0}, {-1.0,-1.0, 1.0},
{1.0,-1.0,1.0}, {1.0,1.0,1.0}, {-1.0,1.0,1.0}};

G.float colors[][3] = {{0.0,0.0,0.0},{1.0,0.0, 0.0},
{1.0,1.0,0.0}, {0.0,1.0,0.0}, {0.0,0.0,1.0},
{1.0,0.0,1.0}, {1.0,1.0,1.0}, {0.0,1.0,1.0}};

Structuring of geometry Il

voi d polygon(int a, int b, int ¢, int d)
{
/* draw a polygon via list of vertices */
gl Begi n(G__POLYGQN) ;

gl Col or3fv(col ors[a]);

gl Nor mal 3f v(normal s[a]) ;

gl Vertex3fv(vertices[a]);

gl Col or 3fv(col ors[b]);

gl Nor mal 3f v(normal s[b]) ;

gl Vertex3fv(vertices[b]);

ol End();
}

Structuring of geometry IlI

voi d drawCube2(voi d)
{

/* map vertices to faces */

pol ygon(O, 3, 2,1);
pol ygon(2, 3,7, 6);
pol ygon(O0, 4, 7, 3);
pol ygon(1, 2, 6, 5);
pol ygon(4,5,6,7);
pol ygon(O0, 1,5, 4);

Structuring of geometry 1|

= Vertex arrays
— Avoid most of the calls to draw the cube
— store the data in the application program
— Access data by single function call

= OpenGL supports six types of arrays (not
only for vertex data)

= Must be enabled (e.g., using init())

Structuring of geometry 1|

= Vertex arrays must be enabled

array =
GL_VERTEX_ARRAY, GL_COLOR ARRAY,
GL_I NDEX_ARRAY, GL_NORMAL_ARRAY,
GL_TEXTURE_ARRAY, G._EDGE_FLAG ARRAY

Structuring of geometry 1|

m Vertex arrays must be initialized to tell OpenGL
the array structure

dm=1, 2, 3
type = GL_SHORT, G._INT, G._FLOAT, G._DOUBLE

stride = nunber of bytes between consecutive
dat a val ues

array = pointer to data

Structuring of geometry 1l

m Ordering and displaying of data in vertex arrays

GLubyt e cubelndices[]={0,3,2,1,2,3,7,6,
0,4,7,3,1,2,6,5,4,5 ,7,0,1,5, 4};

node = G._POLYGO
n = nunber of i «di ces used

type = GL_UNS GNED BYTE, GL_UNSI GNED_ SHORT,
GL_UNSI G\F) | NT

i ndi ces =

Structuring of geometry 1|

init()
{
/* do what ever */
gl Enabl ed i ent St at e(G._COLOR_ARRAY) ;
gl Enabl ed i ent St at e(G._VERTEX_ARRAY) ;
gl VertexPointer (3, G._FLQAT, 0, vertices);
gl Col or Poi nter (3, G._FLOAT, 0, colors);
[* fini for the vertex array stuff */

}

dr awCube()

{

gl Dr awEl enent s(GL_QUADS, 24, GL_UNSI GNED_BYTE,
cubel ndi ces) ;

}

Vertex =
Arrays g —

m Pass arrays of vertices, colors, etc. to OpenGL
in a large chunk

gl VertexPoi nter(3, G._FLOAT, 0, coords)

gl Col or Poi nter(4, G._FLOAT, 0, colors)

gl Enabl ed i ent St at e(G._VERTEX_ARRAY)

gl Enabl eC i ent State(G._COLOR _ARRAY)

gl DrawArrays(G._TRIANGLE STRIP, 0, nunVerts o

(o]

m All active arrays are used in rendering

ocoo

Structuring of commands
(geometry V)

= Two rendering modes in OpenGL
— Immediate mode
— Retained mode

= Retained mode is due to the client/server

architecture of OpenGL

= data can be compiled into display lists

and stored on the server

This feature can be used for fast
preprocessing of data

Structuring of commands
(display lists)

Structuring of commands
(multiple display lists)

Immediate Mode versus
Display Listed Rendering

= Immediate Mode Graphics

— Primitives are sent to pipeline and display right
away

— No memory of graphical entities
= Display Listed Graphics
— Primitives placed in display lists
— Display lists kept on graphics server
— Can be redisplayed with different state
— Can be shared among OpenGL graphics contexts

Immediate Mode versus
Display Lists

Immediate Mode

Per Vertex
Polynomial Operations &
Evaluator Primitive
Assembly

Display o Per Fragment Frame
CPU List | Rasterization Operations Buffer

Display Llisted
Texture
Memory
Pixel

Operations

T |
Poly. §
-J Vertex I
CPU = DL I Raster @ Frag @ FB I
A [ure | A A 1
ixel §

Display Lists — = =

Display Lists

= Not all OpenGL routines can be stored in
display lists
= State changes persist, even after a display

Display Lists and Hierarchy

m Consider model of a car
— Create display list for chassis

— Create display list for wheel
gl NewLi st (CAR, GL_COWPI LE);

gl Cal | List(CHASSIS);

gl Transl atef (...);

gl Cal | Li st(WHEEL); A

gl Transl atef (...)

gl Cal I Li st (W-IEEL;);

gl Endl_.i”st 0);

Why use Display Lists or
Vertex Arrays?

= May provide better performance than
immediate mode rendering

= Display lists can be shared between
multiple OpenGL context
— reduce memory usage for multi-context
applications
= Vertex arrays may format data for
better memory access

Structuring data

= Example and outlook:
— The CUBE example

Easy geometry with GLU

Easy geometry with GLU

Easy geometry with GLUT

= GLUT comes with more easy to use
objects in two different styles:

Easy geometry with GLUT

