
1

Elementary raster algorithms for Elementary raster algorithms for
fast renderingfast rendering

Elementary RenderingElementary Rendering

nn Geometric PrimitivesGeometric Primitives
–– Line processingLine processing
–– Polygon processingPolygon processing

nn Managing OpenGL StateManaging OpenGL State
nn OpenGL BuffersOpenGL Buffers

OpenGL Geometric PrimitivesOpenGL Geometric Primitives

nn All geometric primitives are specified by All geometric primitives are specified by
verticesvertices

GL_QUAD_STRIPGL_QUAD_STRIP

GL_POLYGONGL_POLYGON

GL_TRIANGLE_STRIPGL_TRIANGLE_STRIP GL_TRIANGLE_FANGL_TRIANGLE_FAN

GL_POINTSGL_POINTS

GL_LINESGL_LINES

GL_LINE_LOOPGL_LINE_LOOPGL_LINE_STRIPGL_LINE_STRIP

GL_TRIANGLESGL_TRIANGLES

GL_QUADSGL_QUADS

Design of Line AlgorithmsDesign of Line Algorithms

Why Lines?Why Lines?

nn Lines:Lines:
–– Most common 2D primitive Most common 2D primitive -- done 100s or 1000s done 100s or 1000s

of times each frame, even 3D of times each frame, even 3D wireframeswireframes are are
eventually 2D lines!eventually 2D lines!

–– Lines are Lines are compatiblecompatible with vector displays but with vector displays but
nowadays most displays are raster displays. Any nowadays most displays are raster displays. Any
render stage before render stage before vizviz might need might need discretizationdiscretization..

–– Optimized algorithms contain numerous Optimized algorithms contain numerous
tricks/techniques that help in designing more tricks/techniques that help in designing more
advanced algorithms for line processing.advanced algorithms for line processing.

Line Algorithms in the OpenGL Line Algorithms in the OpenGL
ArchitectureArchitecture

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization
Per Fragment

Operations
Frame
Buffer

Texture
Memory

CPU

Pixel
Operations

2

Line RequirementsLine Requirements
nn Must compute integer coordinates of pixels which lie on or near Must compute integer coordinates of pixels which lie on or near a a

line or circle.line or circle.
nn Pixel level algorithms are invoked hundreds or thousands of timePixel level algorithms are invoked hundreds or thousands of times s

when an image is created or modified when an image is created or modified –– must be fast!must be fast!
nn Lines must create visually satisfactory images.Lines must create visually satisfactory images.

–– Lines should appear straightLines should appear straight
–– Lines should terminate accuratelyLines should terminate accurately
–– Lines should have constant densityLines should have constant density

nn Line algorithm should always be defined.Line algorithm should always be defined.

Basic Math ReviewBasic Math Review

PointPoint--slope Formula For a Lineslope Formula For a Line
Given two points (XGiven two points (X11,Y,Y 11), (X), (X22, Y, Y 22))
Consider a third point on the line: Consider a third point on the line:

P = (X,Y)P = (X,Y)

Slope = (YSlope = (Y 22 -- YY11)/(X)/(X22 -- XX11))
= (Y = (Y -- YY11)/(X)/(X -- XX11))

Solving For YSolving For Y
Y = [(YY = [(Y22--YY11)/(X)/(X22--XX11)]*(X)]*(X--XX11)+ Y)+ Y11

or, plug in the point (0, b) to get or, plug in the point (0, b) to get
the the SlopeSlope--intercept form:intercept form:
Y = Y = mxmx + b+ b

Cartesian Coordinate System

2

4

1 2 3 4 5 6

3

5

6

1 P1 = (X1,Y1)

P2 = (X2,Y2)

P = (X,Y)

SLOPE =
RISE

RUN
=

Y2-Y1

X2-X1

Other Helpful FormulasOther Helpful Formulas
nn Length of line segment between PLength of line segment between P11 and Pand P22::

L =L =

nn Midpoint of a line segment between PMidpoint of a line segment between P11 and and
PP33::
PP22 = ((X= ((X11+X+X33)/2 , (Y)/2 , (Y 11+Y+Y33)/2))/2)

nn Two lines are Two lines are perpendicularperpendicular iffiff
1) M1) M11 = = --1/M1/M22

2) Cosine of the angle between them is 0.2) Cosine of the angle between them is 0.

2
12

2
12)()(yyxx −+−

Using this information, what Using this information, what
are some possible algorithms are some possible algorithms

for line drawing?for line drawing?

Parametric FormParametric Form

Given points PGiven points P 11 = (X= (X11, Y, Y11) and P) and P 22 = (X= (X22, Y, Y22))

X = XX = X11 + t(X+ t(X22--XX11))
Y = YY = Y11 + t(Y+ t(Y22--YY11))

t is called the parameter. Whent is called the parameter. When
t = 0 we get (Xt = 0 we get (X11,Y,Y11))
t = 1 we get (Xt = 1 we get (X22,Y,Y22))

As 0 < t < 1 we get all the other points on the line segment As 0 < t < 1 we get all the other points on the line segment
between (Xbetween (X11,Y,Y11) and (X) and (X22,Y,Y22).).

New algorithm ideas based on New algorithm ideas based on
parametric form?parametric form?

3

Simple DDA* Line AlgorithmSimple DDA* Line Algorithm

void void DDA(intDDA(int X1,Y1,X2,Y2)X1,Y1,X2,Y2)
{{

intint Length, I;Length, I;
float float X,Y,Xinc,YincX,Y,Xinc,Yinc;;

Length = ABS(X2 Length = ABS(X2 -- X1);X1);
if (ABS(Y2 if (ABS(Y2 -- Y1) > Length)Y1) > Length)

Length = ABS(Y2Length = ABS(Y2--Y1);Y1);
XincXinc = (X2 = (X2 -- X1)/Length;X1)/Length;
YincYinc = (Y2 = (Y2 -- Y1)/Length;Y1)/Length;

*DDA: Digital Differential Analyzer*DDA: Digital Differential Analyzer

X = X1;
Y = Y1;
while(X<X2){

Plot(Round(X),Round(Y));
X = X + Xinc;
Y = Y + Yinc;

}
}

DDA creates good lines but it is too time consuming due to the rDDA creates good lines but it is too time consuming due to the round ound
function and long operations on real values.function and long operations on real values.

Compute which pixels should be turned on to
represent the line from (6,9) to (11,12).

Length = ?
Xinc = ?
Yinc = ?

DDA ExampleDDA Example

6 7 8 9 10 11 12 13

9

10

11

12

13

DDA ExampleDDA Example

Line from (6,9) to (11,12).Line from (6,9) to (11,12).

Length := Max of (ABS(11Length := Max of (ABS(11--6), ABS(126), ABS(12--9)) = 59)) = 5
XincXinc := 1:= 1
YincYinc := 0.6:= 0.6

Values computed are:Values computed are:
(6,9), (7,9.6), (6,9), (7,9.6),
(8,10.2), (9,10.8),(8,10.2), (9,10.8),
(10,11.4), (11,12)(10,11.4), (11,12)

6 7 8 9 10 11 12 13

9

10

11

12

13

Fast Lines Fast Lines –– Midpoint MethodMidpoint Method

nn Simplifying assumptions: Assume Simplifying assumptions: Assume
we wish to draw a line between we wish to draw a line between
points (0,0) and (a,b) with slope m points (0,0) and (a,b) with slope m
between 0 and 1 (i.e. line lies in first between 0 and 1 (i.e. line lies in first
octant).octant).

nn The general formula for a line is The general formula for a line is y y
= = mxmx + B + B where where mm is the slope of is the slope of
the line and the line and BB is the yis the y--intercept. intercept.
From our assumptions From our assumptions mm = b/a and = b/a and
BB = 0. = 0.

nn y = (b/a)x + 0 y = (b/a)x + 0 ----> > f(x,y) = f(x,y) = bxbx -- ay ay
= 0 = 0 is an equation for the line.is an equation for the line.

+x-x

-y

+y

Having turned on pixel P at (xHaving turned on pixel P at (xii, , yy ii), the next pixel is NE at (x), the next pixel is NE at (x ii+1, +1,
yy ii+1) or E at (x+1) or E at (xii+1, +1, yy ii). Choose the pixel closer to the line). Choose the pixel closer to the line
f(x, y) = f(x, y) = bxbx -- ay = 0.ay = 0.

Fast Lines (cont.)Fast Lines (cont.)

For lines in the first octant, For lines in the first octant,
given one pixel on the given one pixel on the
line, the next pixel is to line, the next pixel is to
the right (E) or to the the right (E) or to the
right and up (NE).right and up (NE).

P = (xi ,yi) E = (xi + 1, yi)

NE = (xi + 1, yi + 1)

current pixel possible
next pixels

Fast Lines (cont.)Fast Lines (cont.)

The midpoint between pixels E
and NE is (xi + 1, y i + ½).
Let e be the “upward”
distance between the midpoint
and where the line actually
crosses between E and NE. If
e is positive the line crosses
above the midpoint and is
closer to NE. If e is
negative, the line crosses
below the midpoint and is
closer to E. To pick the
correct point we only need to
know the sign of e.

(xi +1, yi + ½ + e)
e

(xi +1, yi + ½)

P = (xi ,yi) E = (xi + 1, yi)

NE = (xi + 1, yi + 1)

4

The Decision VariableThe Decision Variable

f(xf(xii+1, +1, yy ii+ ½ + e) = 0 (point on line)+ ½ + e) = 0 (point on line)
= = b(xb(xii + 1) + 1) -- a(ya(y ii+ ½ + e)+ ½ + e)
= = b(xb(xii + 1) + 1) -- a(ya(y ii + ½) + ½) –– aeae
= = f(xf(xii + 1, + 1, yy ii + ½) + ½) -- aeae

Let Let ddii = = f(xf(xii + 1, + 1, yy ii + ½) = + ½) = aeae; ; ddii is known as the is known as the decision decision
variablevariable ..

Since a = 0, Since a = 0, ddii has the same sign as ehas the same sign as e..

Therefore, we only need to know the value of Therefore, we only need to know the value of ddii to choose between to choose between
pixels E and NE. If pixels E and NE. If ddii = 0 choose NE, else choose E.= 0 choose NE, else choose E.

ButBut, calculating , calculating ddii directly each time requires at least two adds, a directly each time requires at least two adds, a
subtract, and two multiplies subtract, and two multiplies --> too slow!> too slow!

è f(xi + 1, yi + ½) = ae

Decision Variable Decision Variable
calculationcalculation

Algorithm:Algorithm:
Calculate dCalculate d00 directly, then for each i >= 0:directly, then for each i >= 0:
if if ddii = 0 Then= 0 Then

Choose NE = (xChoose NE = (xii + 1, + 1, yy ii + 1) as next point+ 1) as next point
ddi+1i+1 = f(x= f(xi+1i+1 + 1, y+ 1, y i+1i+1 + ½) = + ½) = f(xf(xii + 1 + 1, + 1 + 1, yy ii + 1 + ½)+ 1 + ½)

= = b(xb(xii + 1 + 1) + 1 + 1) -- a(ya(y ii + 1 + ½) = + 1 + ½) = f(xf(xii + 1, + 1, yy ii + ½) + b + ½) + b -- aa
= = ddii + b + b -- aa

elseelse
Choose E = (xChoose E = (xii + 1, + 1, yy ii) as next point) as next point
ddi+1i+1 = f(x= f(xi+1i+1 + 1, y+ 1, y i+1i+1 + ½) = + ½) = f(xf(xii + 1 + 1, + 1 + 1, yy ii + ½)+ ½)

= = b(xb(xii + 1 + 1) + 1 + 1) -- a(ya(y ii + ½) = + ½) = f(xf(xii + 1, + 1, yy ii + ½) + b + ½) + b
= = ddii + b+ b

èè Knowing Knowing ddii, we need only add a , we need only add a constantconstant term to find dterm to find di+1i+1 !!

else {else {
x = x + 1;x = x + 1;
d = d + bd = d + b

}}
}}

The initial value for the decision variable, d0, may be calculated directly
from the formula at point (0,0).
d0 = f(0 + 1, 0 + 1/2) = b(1) - a(1/2) = b - a/2

Therefore, the algorithm for a line from (0,0) to (a,b) in the first octant is:
x = 0;
y = 0;
d = b - a/2;
for(i = 0; i < a; i++) {

Plot(x,y);
if (d = 0) {

x = x + 1;
y = y + 1;
d = d + b - a;

}

Fast Line AlgorithmFast Line Algorithm

Note that the only non-integer value is a/2. If we then multiply by 2 to get d' = 2d, we
can do all integer arithmetic. The algorithm still works since we only care about the
sign, not the value of d.

Bresenham’sBresenham’s Line AlgorithmLine Algorithm
We can also generalize the algorithm to work for lines beginningWe can also generalize the algorithm to work for lines beginning at at

points other than (0,0) by giving x and y the proper initial valpoints other than (0,0) by giving x and y the proper initial values. ues.
This results in This results in Bresenham'sBresenham's Line Algorithm.Line Algorithm.

{Bresenham for lines with slope between 0 and 1}
a = ABS(xend - xstart);
b = ABS(yend - ystart);
d = 2*b - a;
Incr1 = 2*(b-a);
Incr2 = 2*b;
if (xstart > xend) {

x = xend;
y = yend

}
else {

x = xstart;
y = ystart

}

for (i = 0; i<a; i++){
Plot(x,y);
x = x + 1;
if (d = 0) {

y = y + 1;
d = d + incr1;

}
else

d = d + incr2;
}

}

OptimizationsOptimizations

nn Speed can be increased even more by detecting cycles in the deciSpeed can be increased even more by detecting cycles in the decision sion
variable. These cycles correspond to a repeated pattern of pixevariable. These cycles correspond to a repeated pattern of pixel choices.l choices.

nn The pattern is saved and if a cycle is detected it is repeated The pattern is saved and if a cycle is detected it is repeated without without
recalculating.recalculating.

11 12 13 14 15 16 17

9

10

11

12

13

14

15

16

6 7 8 9 10

didi= = 2 2 --6 6 6 6 --2 102 10 2 2 --6 6 6 6 --2 102 10

The aliasing problemThe aliasing problem

nn Aliasing is caused by finite addressability of the display.Aliasing is caused by finite addressability of the display.

nn Approximation of lines and circles with discrete points often Approximation of lines and circles with discrete points often
gives a staircase appearance or "gives a staircase appearance or "JaggiesJaggies".".

Desired line

Aliased rendering of the line

5

AntialiasingAntialiasing -- solutionssolutions
nn Aliasing can be smoothed out by using higher addressability.Aliasing can be smoothed out by using higher addressability.

nn If addressability is fixed but intensity is variable, use the inIf addressability is fixed but intensity is variable, use the intensity tensity
to control the address of a "virtual pixel". Two adjacent pixeto control the address of a "virtual pixel". Two adjacent pixe ls ls
can be be used to give the impression of a point part way betweecan be be used to give the impression of a point part way between n
them. The perceived location of the point is dependent upon thethem. The perceived location of the point is dependent upon the
ratio of the intensities used at each. The impression of a pixeratio of the intensities used at each. The impression of a pixe l l
located halfway between two addressable points can be given by located halfway between two addressable points can be given by
having two adjacent pixels at half intensity.having two adjacent pixels at half intensity.

nn An An antialiasedantialiased line has a series of virtual pixels each located at the line has a series of virtual pixels each located at the
proper address.proper address.

Aliasing / Aliasing / AntialiasingAntialiasing
ExamplesExamples

AntialiasedAntialiased BresenhamBresenham LinesLines

nn Line drawing algorithms such as Line drawing algorithms such as Bresenham'sBresenham's can easily be can easily be
modified to implement virtual pixels. We use the distance (e =modified to implement virtual pixels. We use the distance (e =
ddii/a) value to determine pixel intensities./a) value to determine pixel intensities.

nn Three possible cases which occur during the Three possible cases which occur during the BresenhamBresenham algorithm:algorithm:

AA

B

C

e

B

C

e

A

B

C

e

A = 0.5 + e
B = 1 - abs(e+0.5)
C = 0

A = 0.5 + e
B = 1 - abs(e+0.5)
C = 0

A = 0
B = 1 - abs(e+0.5)
C = -0.5 - e

e > 0 0 > e > -0.5 e < -0.5

Line Rendering ReferencesLine Rendering References
BresenhamBresenham, J.E., "Ambiguities In Incremental Line , J.E., "Ambiguities In Incremental Line RasteringRastering," ," IEEE IEEE

Computer Graphics And ApplicationsComputer Graphics And Applications, Vol. 7, No. 5, May 1987., Vol. 7, No. 5, May 1987.

EcklandEckland, Eric, "Improved Techniques For , Eric, "Improved Techniques For OptimisingOptimising Iterative Iterative
DecisionDecision-- Variable Algorithms, Drawing AntiVariable Algorithms, Drawing Anti--Aliased Lines Quickly Aliased Lines Quickly
And Creating Easy To Use Color Charts," CSC 462 Project Report, And Creating Easy To Use Color Charts," CSC 462 Project Report,
Department of Computer Science, North Carolina State University Department of Computer Science, North Carolina State University
(Spring 1987).(Spring 1987).

Foley, J.D. and A. Van Dam, Foley, J.D. and A. Van Dam, Fundamentals of Interactive Computer Fundamentals of Interactive Computer
GraphicsGraphics, Addison, Addison--Wesley 1982.Wesley 1982.

Newman, W.M and R.F. Newman, W.M and R.F. SproullSproull, , Principles Of Interactive Computer Principles Of Interactive Computer
GraphicsGraphics, McGraw, McGraw --Hill, 1979.Hill, 1979.

