Elementary raster algorithms for
fast rendering

Elementary Rendering

m Geometric Primitives

— Line processing

— Polygon processing
= Managing OpenGL State
= OpenGL Buffers

OpenGL Geometric Primitives

m All geometric primitives are specified by
verticey\

@._LINES

&L FBINS G _LINESTRIP GL_LINE_LOOP

@ GL_TRI ANGLES
;v.\\
/S

GL_TRI ANGLE_STRI P

GL_POLYGON

Qa_QUADS

G_QUAD STRIP
GL_TRI ANGLE_FAN

Design of Line Algorithms

Why Lines?

m Lines:

— Most common 2D primitive - done 100s or 1000s
of times each frame, even 3D wireframes are
eventually 2D lines!

— Lines are compatible with vector displays but
nowadays most displays are raster displays. Any
render stage before viz might need discretization.

— Optimized algorithms contain numerous
tricks/techniques that help in designing more
advanced algorithms for line processing.

Line Algorithms in the OpenGL
Architecture

Per Vertex
Polynomial Operations &
Evaluator Primitive

Assembly
Display
CPU List |

Per Fragment Frame
Operations Buffer

Texture
Memory

Pixel
Operations

Line Requirements

Must compute integer coordinates of pixels which lie on or near a
line or circle.

Pixel level algorithms are invoked hundreds or thousands of times
when an image is created or modified — must be fast!
= Lines must create visually satisfactory images.
— Lines should appear straight
— Lines should terminate accurately
— Lines should have constant density
= Line algorithm should always be defined.

Basic Math Review

Point-slope Formula For a Line Cartesian Coordinate System

Given two points (X;,Y), (X, Y2) 6

Consider a third point on the line:
P =(X.)Y)

P =(XY)

P2 = (X2,Y2)
Slope = (Y- Y /(X - %) 3
= (Y-YIX-X)

Solving For Y P1 = (X1,Y1)
Y = LYY /OG- X)T* (X=X)+ Yy

or, plug in the point (0, b) to get
the Slope-intercept form: stope= RSB _ YW
Y=mx+b RUN X2-X1

Other Helpful Formulas

= Length of line segment between P, and P,:
L= J0e- %) +(y:- w)*

= Midpoint of a line segment between P, and
P3:
P, = (X +X)/2 , (Y +Y3)/2)

= Two lines are perpendicular iff
1) M, = -1/M,
2) Cosine of the angle between them is 0.

Using this information, what
are some possible algorithms
for line drawing?

Parametric Form

Given points P, = (X;, Y;) and P,= (X, Y,)

X = X; + t(X-X,)
Y =Y, + t(Y,-Y,)

tis called the parameter. When
t =0 we get (X,,Y,)
t =1 we get (X,,Y,)

As 0 < t < 1 we get all the other points on the line segment
between (X,,Y,) and (X,,Y,).

New algorithm ideas based on
parametric form?

Simple DDA* Line Algorithm

voi d DDA(int X1,Y1, X2, Y2) X = X1;
{ Y = Y1,
int Length, I; whi | e(X<X2) {

float X Y,Xinc,Yinc; Pl ot (Round(X), Round(Y));
X = X + Xinc;
Length = ABS(X2 - X1); Y =Y + Yinc;
if (ABS(Y2 - Y1) > Length) }

Length = ABS(Y2-Y1); }
Xinc = (X2 - X1)/Length;
Yinc = (Y2 - Y1)/Length;

DDA creates good lines but it is too time consuming due to the round
function and long operations on real values.

*DDA: Digital Differential Analyzer

DDA Example

Compute which pixels should be turned on to
represent the line from (6,9) to (11,12).

Length = ?
Xinc = ?
Yinc =7?

]

6 7 8 9 10 11 12 13

DDA Example

Line from (6,9) to (11,12).

Length := Max of (ABS(11-6), ABS(12-9)) =5
Xinc := 1
Yinc := 0.6

Values computed are:
(6,9), (7,9.6), C
(8,10.2), (9,10.8), m—jxlf‘ s

(10,11.4), (11,12) O |

7 8 9 10 11 12 13

V7

Fast Lines — Midpoint Method

= Simplifying assumptions: Assume
we wish to draw a line between
points (0,0) and (a,b) with slope m -
between 0 and 1 (i.e. line lies in first
octant).

= The general formula for a line is y
= mx + B where mis the slope of *
the line and B is the y-intercept.
Iéromoour assumptions m = b/a and

= y=(b/a)x +0 --> f(x,y) = bx - a
=0 s an equation for the line.

Fast Lines (cont.)

NE = (x+1, y;+1)

For lines in the first octant, °)< _
given one pixel on the current pixel possible
line, the next pixel is to next pixels
the right (E) or to the
right and up (NE). O

P=(x.%) E=(x+1,Y)

Having turned on pixel P at (x; y;), the next pixel is NE at (x;+1,
yi+1) or E at (xi+1, y;). Choose the pixel closer to the line
f(x, y) =bx-ay=0.

Fast Lines (cont.)

The midpoint between pixels E

and NE is (x; + 1, y; + %2).

Let e be the “upward” O
distance between the midpoint

and where the line actually
crosses between E and NE. If
e is positive the line crosses
above the midpoint and is
closer to NE. Ifeis
neqative, the line crosses
below the midpoint and is
closer to E. To pick the
correct point we only need to
know the sian of e.

NE = (x+1, y;+1)

(X+1, y+ % +e)

B
o
(x+1, y+ %)

@)

E=(x+1,y)

(O]

P=0x.%)

O

The Decision Variable

f(x+1, y+ ¥2 + e) = 0 (point on line)
=b(x+1) -aly+ ¥z +e)
—bx+1)-ay + v -ce | D f(x + Ly +Ye) =ae |
=f(x+ 1,y;+%) - ae

Letd; = f(x; + 1,y;+ %) =ae; d, is known as the decision
variable.

Since a = 0, d; has the same sign as e.

Therefore, we only need to know the value of d; to choose between
pixels E and NE. If d; = 0 choose NE, else choose E.

But, calculating d; directly each time requires at least two adds, a
subtract, and two multiplies -> too slow!

Decision Variable
calculation

Algorithm:
Calculate d, directly, then for each i >= 0:
if d; = 0 Then
Choose NE = (x; + 1, y;+ 1) as next point
Oy = f(Kiay + LY+ %) =fx+1+1,y;+1+2)
=b+1+1)-ay, +1+%)=fx+1,y+%)+b-a
=d+b-a
else
Choose E = (x;+ 1,y as next point
Gy = Xy + 1, Vg + %2) =6+ 1+ 1,y+ %)
=bx+1+1)-ay;+¥%)=f(x+1,y;+¥%)+b
=d+b

= Knowing d;, we need only add a constant term to find d,,; !

Fast Line Algorithm

The initial value for the decision variable, d,, may be calculated directly
from the formula at point (0,0).
dy=f(0+1,0+1/2) =b(1) -a(1/2) = b - a/2

Therefore, the algorithm for a line from (0,0) to (a,b) in the first octant is:
x = 0,

- el se {
y = 0; X =X + 1;
d=b-al2 d=d+b
for(i =0; i <a; i++) { }
Plot(x,y); }
if (d=0) {
X =x + 1
y =y +1
d=d+b- a
}

Note that the only non-integer value is a/2. If we then multiply by 2 to get d' = 2d, we
can do all integer arithmetic. The algorithm still works since we only care about the
sign, not the value of d.

Bresenham'’s Line Algorithm

We can also generalize the algorithm to work for lines beginning at
points other than (0,0) by giving x and y the proper initial values.
This results in Bresenham's Line Algorithm.

{Bresenham for lines with slope between 0 and 1}
a = ABS(xend - xstart);
o 2 penend T St e (= o i<ar 1+
Incrl = 2*(b-a); :‘ g[ix;\/)li
Incr2 = 2*b; f_d—oy
if (xstart > xend) { if (d=)+ (1_
5 2 £:§+iﬁcr1'
= yend - ’
y y }
el se
chee x = xstart; d=d+incrz;
y = ystart }
} }

Optimizations

= Speed can be increased even more by detecting cycles in the decision
variable. These cycles correspond to a repeated pattern of pixel choices.

= The pattern is saved and if a cycle is detected it is repeated without
recalculating.

Py

The aliasing problem

= Aliasing is caused by finite addressability of the display.

= Approximation of lines and circles with discrete points often
gives a staircase appearance or “Jaggies".

Antialiasing - solutions

= Aliasing can be smoothed out by using higher addressability.

= If addressability is fixed but intensity is variable, use the intensity
to control the address of a "virtual pixel”. Two adjacent pixels
can be be used to give the impression of a point part way between
them. The perceived location of the point is dependent upon the
ratio of the intensities used at each. The impression of a pixel
located halfway between two addressable points can be given by
having two adjacent pixels at half intensity.

= An antialiased line has a series of virtual pixels each located at the
proper address.

Aliasing / Antialiasing
Examples

"Jaggies" "Jaggies'

Antialiased Bresenham Lines

= Line drawing algorithms such as Bresenham's can easily be
modified to implement virtual pixels. We use the distance (e =
dy/a) value to determine pixel intensities.

= Three possible cases which occur during the Bresenham algorithm:

§> >e>-0.
o 2o A
” o o"o

Line Rendering References

Bresenham, J.E., "Ambiguities In Incremental Line Rastering," 1EEE

Computer Graphics And Applications, Vol. 7, No. 5, May 1987.

Eckland, Eric, "Improved Techniques For Optimising Iterative
Decision- Variable Algorithms, Drawing Anti-Aliased Lines Quickly
And Creating Easy To Use Color Charts," CSC 462 Project Report,
Department of Computer Science, North Carolina State University
(Spring 1987).

Foley, J.D. and A. Van Dam, Fundamentals of Interactive Computer
Graphics, Addison-Wesley 1982.

Newman, W.M and R.F. Sproull, Principles Of Interactive Computer
Graphics, McGraw Hill, 1979.

