Realtime 3D Computer Graphics & Virtual Reality

Introduction

Marc Erich Latoschik

Acknowledgement: Partly based on work by Angel/Bowman/B. Fröhlich and others

3D Computer Graphics is about

- Representation and modeling of three-dimensional objects
- Creation of 3D scenes including lighting
- Rendering of 3D scenes
- Computer Animation

Virtual Reality is about

- 3D Computer graphics
- Real-time simulation & rendering
- Interaction & feedback
- Immersion
- Creation & design of virtual environments

3D Computer Graphics vs. Virtual Reality

- VR can be seen as subfield of CG
- also instructive to contrast VR with conventional CG:

3D Computer Graphics	Virtual Reality
Purely visual presentation	Multimedia presentation visual, acoustic, haptic
Presentation can be rendered off-line, time is uncritical	Real-time presentation
Static scenes or predefined animations	Real-time interaction and simulation
2D interaction mouse, keyboard	3D interaction with special input devices + speech

VR-programming

- To drive advanced virtual reality input devices like
 - 3D mice, spaceball
 - stylus
 - gloves
 - 6DOF trackers (magnetic, gyroscopic, ultrasonic, optical)
 - speech recognition systems
 - haptic devices
 - treadmill-type
 - inertial displays (flight simulators) full and partial

VR Input devices

- Hardware that allows the user to communicate with the system
- Input device vs. interaction technique
- Same device can be used for various interaction techniques

Input device characteristics

- Discrete / event-based
- Continuous / sampled
- Hybrids
- Miscellaneous input
 - speech
 - locomotion devices

Discrete input devices

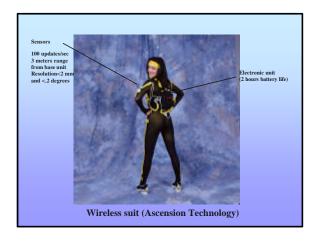
- Generate one event at a time
- Event queue
- Examples:
- buttons
 - keyboards
 - pinch gloves

Continuous input devices

- Produce steady* stream of data
- Sampled at various times by the system for "snapshot" of state
- Examples:
 - trackers
 - data gloves
 - potentiometers

Tracking systems

- Measure position and/or orientation of a sensor
 - 6 degrees of freedom in space
- Most VEs track the head and the hand(s)
- Spatial input devices
- Tracked real objects resembling virtual objects
- Motion capture


Electromagnetic tracker

- Most common (still)
- Transmitter
 - Creates three orthogonal lowfrequency magnetic fields
 - Short range version: < 1m
 - Long range version: < 3m
- Receiver(s)
 - Three perpendicular antennas
 - Distance is inferred from the currents induced in the antennas
- Distortions
 - Noisy requires filtering
 - Affected by metal requires non-linear calibration
- Wireless versions

6DOF Magnetic tracker & DataGlove

Optical tracker

- marker"
 - reflects IR light
 - Combined to unique spatial configuration per tracked position
- > 3 IR cameras
- Advantages
- No interference with metal
- Low latency High resolution

- DisadvantagesLine of sight issues (more cameras help)

6DOF optical tracker by ART

Acoustic Trackers

- Uses ultrasound
- Typical setup for 3 DOF
 - 3 microphones
 - 1 speaker
- Distance is inferred from the travel time for the sound
- Advantages
 - No interference with metal
 - Relatively inexpensive
- Disadvantages
 - Line of sight issues
 - Sensitive to air temperature and certain noises

Logitech Fly Mouse

Inertial trackers

- Intersense IS-300
- Less noise, lag
- Only 3 DOFs (orientation)
- Use gyroscopes and accelerometers

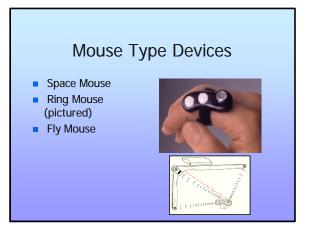
Hybrid Trackers

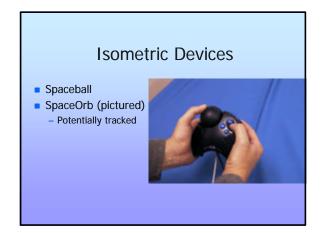
- For example: Intersense IS-600 / 900
- inertial (orient.)
- acoustic (pos.)

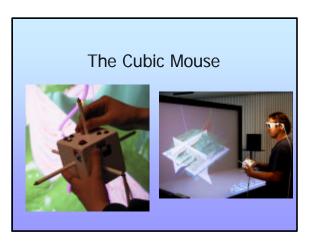
Data Gloves

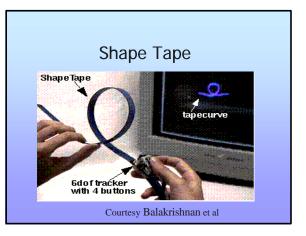
- Used to track the user's finger movements
 - for gesture and posture communication
- Almost always used with a tracker sensor mounted on the wrist
- Common types
 - CyberGlove
 - 18 sensors
 - 22 sensors - 5DT Glove
 - 5 sensors
 - 16 sensors

Hybrid devices


- Continuous and discrete input
- Examples
 - Button device + tracker
 - Flex & Pinch
 - ring mouse
 - LCD tablet
 - Shape Tape
 - Cubic Mouse
 - Spaceball




Tracked Wands


Props ■ Head prop Car prop Courtesy Hinkley et al.

Cubic Mouse First 12 DOF input device Tracks position and rotation of rods using potentiometers Other shapes and implementations - Mini Cubic Mouse

possible

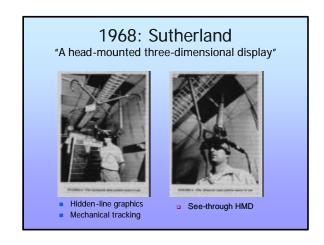
Treadmill types (e.g. bicycles)

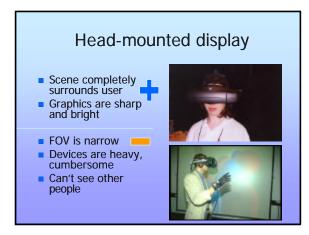
Speech Input

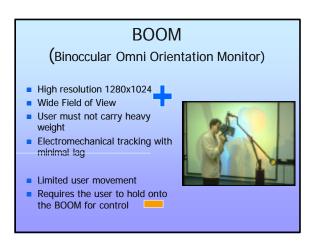
- Can complement other modes of interaction
 - multi-modal interaction
- Issues to consider
 - continuous vs. one-time recognition
 - choice and placement of microphone
 - training vs. no training
 - handling of false positive recognition
 - surrounding noise interference

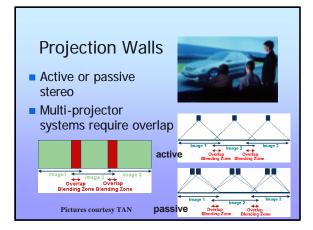
VR-programming

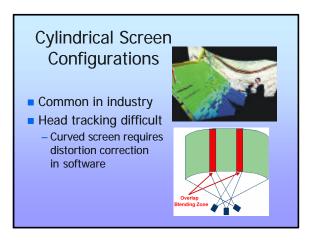
- To drive enhanced virtual reality display setups like
 - responsive workbenches
 - walls
 - head-mounted displays
 - boomes
 - domes
 - caves

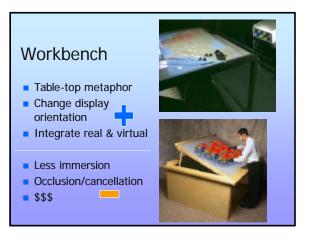

Fish Tank VR

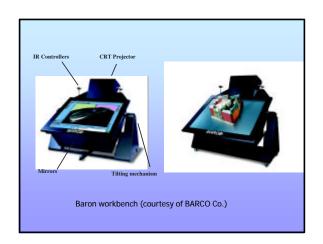

- Monitor-based systems
- Use i.e. shutter glasses

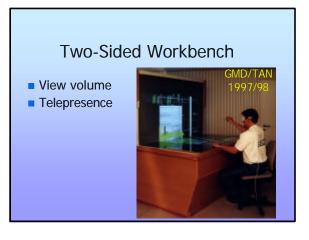


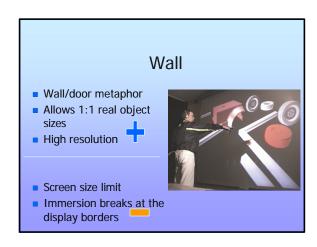

3D (stereo) viewing 1838 – Wheatstone stereoscope The Wheatstone stereoscope used ongled mirror IAI to reflect the stereoscopic drawings (E) toward the viewer's eyes.

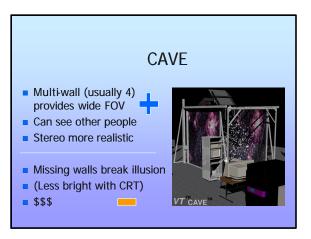


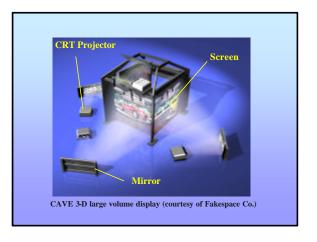


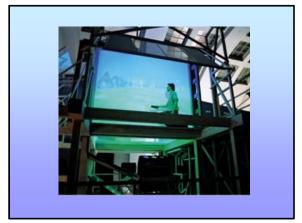


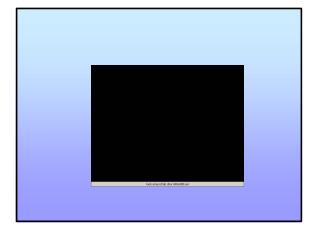

Projection-based VR Use video projectors Rear or front projection Active or passive stereo Commonly used

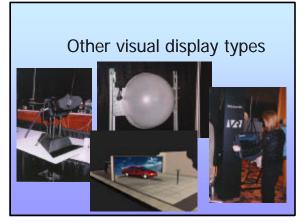


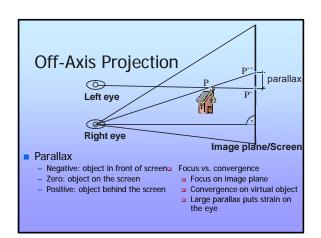


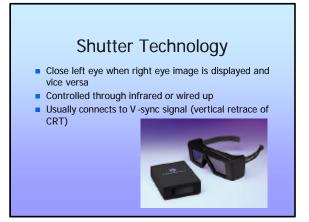


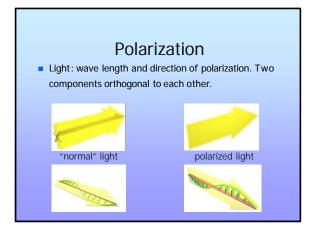


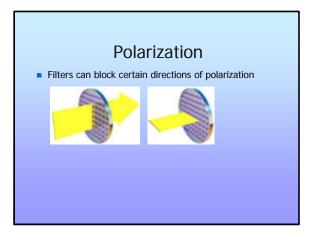


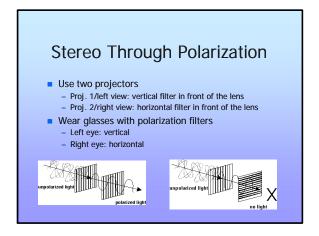


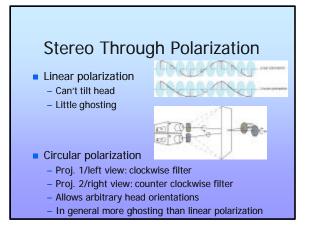

Immersion and stereoscopy


- Standard 3D rendering gives depth cues:
 - perspective
 - relative size
 - texture gradient, etc.
- To enhance 3D depth, use stereo imagery
- Slightly different images for each eye


Implementing stereoscopy


- Render from two offset eyepoints (IPD)
- 2 images per frame may affect fr. rate
 - multiple graphics pipelines
 - each image lower resolution
- HMD: directly send images to 2 eyes
- other displays:
 - time-multiplexed stereo (shutter glasses)
 - using phase filters
 - using color filters
 - autostereoscopic displays





Immersion needs more

- The most important depth cue is not stereo, it's motion parallax
 - far objects move more slowly across the visual field as our viewpoint moves
- Can achieve motion parallax with head tracking
- Tracking also allows us to view the scene "naturally"

Immersion needs more

- Auditory displays
 - standard
 - spatialized
- Haptic displays
 - collision indication
 - force-feedback
- Olfactory displays (!)
- Natural interaction and believable object behaviour

VR-programming

- Input and display devices are the main hardware interface to users
- Immersion embeds users through the generation of rich sensory experiences
- But how is the programmers/designers view?

VR-programming tools Direct rendering and gfx packages OpenGL, Direct3D, GKS (3D) Scene graph based tools VRML, OpenGL Performer, OpenGL Optimizer, Open Inventor, PHIGS+ VR modeling toolkits AVANGO, World toolkit, Massive1-3, Dive, Lightning, game engines modeling design (declarative)

What is a gfx package? software that takes user input and passes it to applications that displays graphical output for applications Application Application